
Conventional Implicature as a scope phenomenon

Simon Charlow

Rutgers, The State University of New Jersey

Workshop on Continuations & Scope
May 22, 2015 ⋅ NYU

1

Goals for today

▸ Give a semantics for non-restrictive relatives, where supplemental
content interacts with its semantic context by taking scope.

▸ Concretely, I’ll extend the dynamic semantics of Charlow 2014
with some apparatus for two-dimensional content, à la Potts 2005.

▸ I argue that the extension is in fact all we need to say — the
empirical properties we’re after just fall out.

2

Where we are

Data

Composition: dynamic side effects

Adding in CIs

Accounting for our data

Wrapping up

3

Basic data

▸ Today we’ll be looking at non-restrictive relative clauses (NRRCs):

(1) Sue, who’s smart, bribed Jon, who isn’t.

▸ Two related questions:
▸ What sort of meaning should we assign this sentence?
▸ How is the NRRC compositionally integrated?

4

Non-interaction

▸ In general, content introduced by NRRCs seems not to interact
with other operators in a sentence:

(2) I didn’t read Beowulf, which is a stone-cold classic.

(3) If John, who likes dancing, comes, the party will be great.

▸ Reminiscent of presupposition, but ultimately distinct (e.g., as
Potts 2005 points out, the NRRC’s content can’t be presupposed!).

5

Scope of the anchor

▸ Scope of the anchor (after AnderBois et al. 2015: ex.72):

(4) John didn’t read a book, which Mary had recommended.

▸ This sentence only allows a wide-scope reading for the indefinite.

6

Quantifiers not welcome

▸ Quantifiers cannot serve as anchors:

(5) I read {Beowulf, a book, *no book}, which Mary likes.

7

Binding

▸ An indefinite can bind out of a NRRC (e.g. AnderBois et al. 2015):

(6) John, who nearly killed a womani with his car, visited heri in
the hospital.

▸ In fact, binding can go both ways:

(7) A boyi read Beowulf, which hei loved.

▸ Quantifiers, alas, still not allowed:

(8) *John, who nearly killed no womani with his car, visited heri
in the hospital.

(9) *No boyi read Beowulf, which hei loved.

▸ Surprising: we see the NRRC semantically interacting with the rest
of the sentence, despite apparent non-interaction observed prior.

8

Potts 2005: radical separation

▸ Potts-style parsetree for Sue, who’s smart, bribed Jon, who isn’t:

s bribed j

bribed j

j
●

¬smart j

bribed

s
●

smart s

▸ This representation is interpreted by pruning the bulleted
meanings and conjoining them in a separate dimension.

▸ Worries: non-compositional (à la e.g. DRT), how to get interaction
between the two dimensions? What is special about indefinites?

9

AnderBois et al. 2015: no separation

▸ No distinguished dimension for supplemental content.
▸ Distinguish two kinds of updates:

▸ Proposals to update the common ground, subject to negotiation.
▸ Immediate, non-negotiated updates to the common ground.

▸ Proposals associated with at-issue content, impositions with
not-at-issue content (e.g. what’s introduced by a NRRC).

▸ Worry: many of the features that fall out of a two-dimensional
analysis need to be stipulated:

▸ Non-interaction
▸ Types of anchors
▸ Scope of the anchor
▸ Differential binding capabilities of indefinites, true quantifiers

10

Upgrading a dynamic semantics?

▸ Something you might hope for: start with a dynamic semantics,
tack on a second dimension, and let the chips fall where they may.

11

Where we are

Data

Composition: dynamic side effects

Adding in CIs

Accounting for our data

Wrapping up

12

Example: nondeterminism

▸ It is sometimes useful to entertain multiple values in parallel:

Ja linguistK = {x ∣ lingx}JJohn met a linguistK = {j met x ∣ lingx}

▸ Usual approach is to enrich composition to handle sets:

JABK = {f x ∣ f ∈ JAK ∧ x ∈ JBK}
▸ Another, equally valid possibility is to suppose that alternatives
take scope (Charlow 2015).

13

Scoping alternatives

▸ Requires two familiar type-shifters.
▸ First: return is Karttunen 1977’s C○, aka Partee 1986’s ident. It
turns a boring thing into a fancy thing (though still fairly boring).

return x ∶= {x}

▸ Second: >>= turns a setm into a scope-taker by feeding each
member ofm to a scope κ and unioning the resulting sets.

m >>= κ ∶=⋃
x∈m

κx

▸ E.g., {x ∣ linguistx}>>= = λκ. ⋃
linguistx

κx.1

1{x ∣ linguist x}>>= is actually equivalent to the meaning Cresti 1995 assigns to which
linguist, and also crops up in Heim 2000; Ciardelli & Roelofsen to appear.

14

Fancy, boring types

▸ Typing judgments, where Fa should be read as “a fancy a”. In this
case, a fancy a is simply a set of a’s, so Fa ∶∶= {a} ∶∶= a→ t:

return ∶∶ a→ Fa (>>=) ∶∶ Fa→ (a→ Fb)→ Fb

▸ return and >>= build a bridge between fancy things (sets of
alternatives) and boring things (familiar denotations):

m>>=
±

(a→Fb)→Fb

a→Fb
³¹¹¹·¹¹¹µ
(λx.return ... x ...)

15

An example

▸ An example of how this works for Johnmet a linguist:

Ft

e→ Ft

Ft

return: j met x

λx

(e→ Ft)→ Ft

{x ∣ lingx}>>=

▸ Gives the expected set of propositions, about different linguists:

{j met x ∣ lingx}

▸ This pattern will be repeated time and again. The alternative
generator takes scope via (>>=), return applies to its remnant.

16

State-sensitivity: the Reader monad

▸ Some things (e.g., pronouns) are sensitive to the state at which
they’re evaluated. Suggests the following fancy type:

Fa ∶∶= s→ a

▸ Along with the following monadic operations:

return x ∶= λi. x m >>= κ ∶= λi. κ (mi) i

▸ Example, supposing she0 ∶= λi. i0

she>>=0 (λx.return: x left) = λi. i0 left

17

Combining the two: the Reader + Set monad

▸ Wemight even combine nondeterminism and state-sensitivity,
taking fancy a’s to be functions from states into sets of a’s.

Fa = s→ {a}

▸ This in turn implies minimally tweaked versions of return and >>=:

return x ∶= λi.{x} m >>= κ ∶= λi. ⋃
x ∈mi

κx i

▸ Example, supposing a.ling ∶= λi.{x ∣ lingx} and her0 ∶= λi.{i0}.

a.ling>>= (λx.her>>=0 (λy.return: xmet y))
= λi.{xmet i0 ∣ lingx}

18

The Monad Slide

▸ Any return , (>>=) deomposes lift (e.g. Partee 1986):

(return x)>>= = liftx = λκ. κ x

▸ They also form something known in category theory & computer
science as amonad (e.g. Moggi 1989; Wadler 1992, 1995).

▸ In general, monads are really good at allowing (arbitrarily) fancy
things to interact with boring things.

▸ See Shan 2002; Giorgolo & Asudeh 2012; Unger 2012; Charlow
2014 for discussions of monads in natural language semantics.

19

do-notation

▸ There’s a convenient notation for working with these “LFs”:

do x ←m

y← n

⋮
return:ϕ

= m >>= (λx.n >>= (λy. ⋯ return:ϕ))

▸ Standard sugaring in Haskell, essentially the “monad
comprehensions” of Wadler 1992.

20

Examples of do-notation

▸ An example with alternatives (using the Set monad):

do x← {x ∣ lingx}
return: j met x

= {j met x ∣ lingx}

▸ An example with state-sensitivity (using the Reader monad):

do x← λi. i0
return: j met x

= λi. j met i0

▸ And an example with both (using the Reader + Set monad):

do x ← λi.{x ∣ lingx}
y← λi.{i0}
return: xmet y

= λi.{xmet i0 ∣ lingx}

21

Dynamics: basic data

▸ A familiar data point: Indefinites behave more like names than
quantifiers with respect to anaphoric phenomena.

(10) {Pollyi, a linguisti, *every linguisti} came in. Shei sat.

22

Discourse referents
▸ Dynamic semantics: sentences add discourse referents to the
“conversational scoreboard” (e.g. Groenendijk & Stokhof 1991):

i JPolly came inK i + p

▸ Indefinites (but not quantifiers) also set up discourse referents. In
case four linguists came in — a, b, c, and d — we’ll have:

i Ja linguist came inK
i + d

i + c

i + b

i + a

▸ Formally captured by modeling meanings as relations on states.
For example, here is a candidate meaning for a linguist came in:

λi.{i + x ∣ linguistx ∧ camex}

23

Folding in dynamics

▸ It’s straightforward to fold dynamics into the monadic perspective.
▸ Dynamics relies on the ability to output modified assignments
(indeed, given indefinites, to output alternative assignments).

▸ One way to think of this is in terms of a new “fancy” type:

Fa ∶∶= s→ {⟨a, s⟩}

▸ An upgrade from the previous semantics, where Fa ∶∶= s→ {a}.
▸ The monadic operations again essentially follow from the types:

return: x ∶= λi.{⟨x, i⟩} m >>= κ ∶= λi. ⋃
⟨x,j⟩ ∈mi

κx j

24

Basic meanings

▸ Meaning for an indefinite:

a.ling = λi.{⟨x, i⟩ ∣ lingx}

▸ And pronouns (where i0 is the most recently introduced dref in i):

she0 = λi.{⟨i0, i⟩}

25

Binding

▸ Introducing drefs for thirsty pronouns can happen modularly:

m▸= do x←m

λi. (return x) i+x

▸ Example of how this works for an indefinite:

a.ling▸ = λi.{⟨x, i + x⟩ ∣ lingx}

▸ We can also ▸-shift simple type e individuals injected into the
monad with return:

(return:m)▸ = λi.{⟨m, i +m⟩}

26

Dynamic binding via LF pied-piping
▸ Remarkably, rejiggering the semantics in this way predicts that
dynamic binding arises via a kind of “LF pied-piping”:

S

Λ

S

Λ

S

return: p and q

λq

S>>=

she0 sat

λp

S>>=

a linguist ▸ came in

▸ Unlike standard dynamic approaches, this derivation doesn’t
require a notion of dynamic conjunction.

▸ In keeping with the approach I’ve been advocating, conjunction is
boring and interacts with fancy things via return and >>=.

27

From another angle

▸ The “LF” from the last slide, in terms of do-notation:

do p← (do x← a.ling▸

return: leftx)
q← (do y← she0

return: tiredy)
return: p ∧ q

▸ The result here is equivalent to:

do x← a.ling▸

return: leftx ∧ tiredx

28

Closure

▸ Important part of any dynamic semantics: operators that quantify
over alternatives. Usually: negation, things defined in terms of it.

▸ Negation, type Ft→ Ft:

not = λm.λi.{⟨¬∃π ∈mi ∶ π0, i⟩}

▸ Universals, cf. ¬∃¬ϕ, type (e→ Ft)→ Ft:

every.ling = λκ.not (do x← a.ling
not (κx))

▸ Equivalent rendering of the universal:

λκ. λi.{⟨∀x ∈ ling ∶ ∃π ∈ κx i ∶ π0, i⟩}

29

Where we are

Data

Composition: dynamic side effects

Adding in CIs

Accounting for our data

Wrapping up

30

Writer: the monad for supplemental content

▸ Giorgolo & Asudeh 2012 point out that theWritermonad is useful
for modeling 2-dimensional content.

▸ Things in theWriter monad are pairs of values and some
supplemental content:

Fa = a ● t

▸ Where ● is just the pair constructor, i.e. ⟨⋅ , ⋅⟩. I use it to visually
distinguish, and to emphasize the connection with Potts 2005.

▸ Injection is pairing a value with a trivial supplement. Sequencing
involves conjoining supplemental content.

return x ∶= x ● ⊺ x ● p >>= κ ∶= v ● p∧q
where v ● q = κx

31

CombiningWriter with dynamics

▸ A fancy a can harbor nondeterminism, state-changing, and now,
supplemental content:

Fa ∶∶= s→ {⟨a ● t, s⟩}

▸ Monadic operations are expressed in terms of the “underlying”
dynamic monad:

return: x ∶= return: x ● ⊺ m >>= κ ∶= do x ● p←m

v ● q← κx

return: v ● p∧q

▸ De-sugared version of sequencing:

λi.{⟨v ● p∧q,h⟩ ∣ ⟨x ● p, j ⟩ ∈mi ∧
⟨v ● q,h⟩ ∈ κx j }

32

Where we’re headed

▸ John, who is a linguist (Fe):

return: j ● ling j

▸ A friend of mine, who is a linguist (Fe):

do x← a.friend
return: x ● lingx

▸ Sequencing any of these Fe’s with the rest of the sentence:

do x←m

return: leftx

▸ No problem for supplemental things to interact with boring things.

33

Dynamic interactions

▸ Key bit: Writer + Dynamic monad is still a State monad!
▸ This means it is totally kosher to sequence something in the
dynamic monad with aWriterT dynamic program:

do x←m

do ✓

▸ A trivial but revealing example — lifting a Fe into a Fe:

do x← a.ling▸

return x
= λi.{⟨x ● ⊺, i + x⟩ ∣ lingx}

▸ Indeed, any Fa can be turned into a Fa, and any a into an Fa.

34

Comma

▸ Semantics for the comma intonation — turns a restrictive relative
clause into a non-restrictive relative.

commaκ = λx. do p← κx

return: x ● p

▸ Type: (e→ Ft)→ e→ Fe
▸ De-sugared (notice that the type is e→ Fe):

λx. λi.{⟨x ● p, j⟩ ∣ ⟨p, j⟩ ∈ κx i}

35

Basic example

▸ A structure for John, who’s smart:2

Fe

e→ Fe

e→ Ft

who’s smart

(e→ Ft)→ e→ Fe

comma

e

John

▸ Composing up via simple functional application, we end up with
the following, as expected:

comma (λx. return: smartx) j = λi.{⟨j ● smart j, i⟩}
= return: j ● smart j

2Suppressing derivation of the relative clause, but see Charlow 2014 for details.
36

Bridging the monads
▸ Can now fold in an indefinite, similarly:

Fe

e→ Fe

Fe

e→ Fe

e→ Ft

who’s smart

(e→ Ft)→ e→ Fe

comma

e

x

λx

(e→ Fe)→ Fe

a linguist>>=

▸ Yields the following meaning (again, composing by simple FA):

do x← a.ling▸

comma (λx.return: smartx)x
▸ Bottles up a nondeterministic value, supplement, updated state:

= λi.{⟨x ● smartx, i+x⟩ ∣ lingx}
37

Where we are

Data

Composition: dynamic side effects

Adding in CIs

Accounting for our data

Wrapping up

38

Independence

▸ Why do universals, negation, etc. appear not to interact with
appositive content?

▸ Their types are incompatible! E.g. universal needs to take scope
over a (e→ Ft)→ Ft! It can’t do anything with an e→ Ft.

▸ For exactly the same reason, it is impossible to anchor a NRRC to a
universal. The types just don’t fit.

▸ More generally, it appears that we don’t require any meanings
with negative occurrences of Fa types (save for “grammatical”
operations like return, >>=, and perhaps λ).

▸ This very closely mirrors the situation in Potts 2005.

39

Scope of the anchor

▸ Works for the same reason.
▸ Type of e.g. negation: Ft→ Ft.
▸ There is just no way to combine this with an Ft. The negation
doesn’t know what to do with the extra dimension of content!

▸ But that’s the only way for negation to scope over an
indefinite-anchored NRRC! And that just won’t work.

40

Binding into a NRRC

▸ A linguist knows John, who likes her:

do x← a.ling▸

do y← λi.{⟨j ● j likes i0, i⟩}
return: x knows y

▸ Evaluated and de-sugared:

λi.{⟨x knows j ● j likes x, i + x⟩ ∣ lingx}

▸ The important bit: a.ling▸ can bind into the appositive because it
makes sense to sequence a Fawith a Fa (here, Fe and Ft).

▸ Again, the reason is that any Fa is a Fa ● t.

41

Binding out of a NRRC

▸ John, who knows a linguist, likes her:

do x← λi.{⟨j ● j knows v, i + v⟩ ∣ ling v}
y← (do z← her0

return: z)
return: x likes y

▸ Evaluated and de-sugared:

λi.{⟨j likes v ● j knows v, i + v⟩ ∣ ling v}

42

No binding for true quantifiers

▸ For, e.g., a universal to bind into an appositive, the universal
would need to take scope over the appositive.

▸ Again, their types are incompatible. A universal needs to take
scope over a (e→ Ft)→ Ft! It can’t do anything with an e→ Ft.

▸ For, e.g., a universal to bind out of an appositive, you’d need the
universal to be externally dynamic. Which it isn’t:

every.ling = λκ.not (do x← a.ling
not (κx))

43

Exceptional scope

▸ Since the theory I’ve proposed relies on scope-taking, you might
expect that we have to appeal to exceptional scope-taking to
explain cases when an NRRC occurs in an island.

▸ Well, yes and no. We do, but exceptional scope actually just falls
out of the monadic approach. See Charlow 2014, 2015 for details.

44

Where we are

Data

Composition: dynamic side effects

Adding in CIs

Accounting for our data

Wrapping up

45

Wrapping up

▸ Super natural to enrich the dynamic monad (nondeterminism and
state) with supplemental content.

▸ Involves nothing but theWriterT transform and a semantics for the
comma intonation!

▸ Predicts a number of properties of NRRCs:
▸ Independence/non-interaction
▸ Which things can bind into and out of appositives, which can’t
▸ Scope of the anchor

▸ Fully compositional. No need for a representation language —
direct model-theoretic interpretation.

▸ Everything happens via functional application, with monadic
combinators greasing the compositional skids.

46

References

AnderBois, Scott, Adrian Brasoveanu & Robert Henderson. 2015. At-issue Proposals and
Appositive Impositions in Discourse. Journal of Semantics 32(1). 93–138.

Charlow, Simon. 2014. On the semantics of exceptional scope: New York University Ph.D. thesis.

Charlow, Simon. 2015. The scope of alternatives. Talk presented at SALT 25.

Ciardelli, Ivano & Floris Roelofsen. to appear. Alternatives in Montague Grammar. In Proceedings
of Sinn und Bedeutung 19, xx–xx.

Cresti, Diana. 1995. Extraction and reconstruction. Natural Language Semantics 3(1). 79–122.

Giorgolo, Gianluca & Ash Asudeh. 2012. ⟨M,η,⋆⟩: Monads for conventional implicatures. In
Ana Aguilar Guevara, Anna Chernilovskaya & Rick Nouwen (eds.), Proceedings of Sinn und
Bedeutung 16, 265–278. MITWorking Papers in Linguistics.

Groenendijk, Jeroen &Martin Stokhof. 1991. Dynamic predicate logic. Linguistics and Philosophy
14(1). 39–100.

Heim, Irene. 2000. Notes on Interrogative Semantics. Unpublished lecture notes.

Karttunen, Lauri. 1977. Syntax and semantics of questions. Linguistics and Philosophy 1(1). 3–44.

Moggi, Eugenio. 1989. Computational lambda-calculus and monads. In Proceedings of the Fourth
Annual Symposium on Logic in computer science, 14–23. Piscataway, NJ, USA: IEEE Press.

Partee, Barbara H. 1986. Noun Phrase Interpretation and Type-shifting Principles. In Jeroen
Groenendijk, Dick de Jongh &Martin Stokhof (eds.), Studies in Discourse Representation Theory
and the Theory of Generalized Quantifiers, 115–143. Dordrecht: Foris.

47

References (cont.)
Potts, Christopher. 2005. The logic of conventional implicatures. Oxford: Oxford University Press.

Shan, Chung-chieh. 2002. Monads for natural language semantics. In Kristina Striegnitz (ed.),
Proceedings of the ESSLLI 2001 Student Session, 285–298.

Unger, Christina. 2012. Dynamic Semantics as Monadic Computation. In Manabu Okumura,
Daisuke Bekki & Ken Satoh (eds.), New Frontiers in Artificial Intelligence JSAI-isAI 2011, vol. 7258
Lecture Notes in Artificial Intelligence, 68–81. Springer Berlin Heidelberg.

Wadler, Philip. 1992. Comprehending monads. InMathematical Structures in Computer Science,
vol. 2 (special issue of selected papers from 6th Conference on Lisp and Functional
Programming), 461–493.

Wadler, Philip. 1995. Monads for functional programming. In Johan Jeuring & Erik Meijer (eds.),
Advanced Functional Programming, vol. 925 Lecture Notes in Computer Science, 24–52.
Springer Berlin Heidelberg.

48

	Data
	Composition: dynamic side effects
	Adding in CIs
	Accounting for our data
	Wrapping up

