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Goals for today

▸ Give a semantics for non-restrictive relatives, where supplemental
content interacts with its semantic context by taking scope.

▸ Concretely, I’ll extend the dynamic semantics of Charlow 2014
with some apparatus for two-dimensional content, à la Potts 2005.

▸ I argue that the extension is in fact all we need to say — the
empirical properties we’re after just fall out.
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Basic data

▸ Today we’ll be looking at non-restrictive relative clauses (NRRCs):

(1) Sue, who’s smart, bribed Jon, who isn’t.

▸ Two related questions:
▸ What sort of meaning should we assign this sentence?
▸ How is the NRRC compositionally integrated?
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Non-interaction

▸ In general, content introduced by NRRCs seems not to interact
with other operators in a sentence:

(2) I didn’t read Beowulf, which is a stone-cold classic.

(3) If John, who likes dancing, comes, the party will be great.

▸ Reminiscent of presupposition, but ultimately distinct (e.g., as
Potts 2005 points out, the NRRC’s content can’t be presupposed!).
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Scope of the anchor

▸ Scope of the anchor (after AnderBois et al. 2015: ex.72):

(4) John didn’t read a book, which Mary had recommended.

▸ This sentence only allows a wide-scope reading for the indefinite.
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Quantifiers not welcome

▸ Quantifiers cannot serve as anchors:

(5) I read {Beowulf, a book, *no book}, which Mary likes.
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Binding

▸ An indefinite can bind out of a NRRC (e.g. AnderBois et al. 2015):

(6) John, who nearly killed a womani with his car, visited heri in
the hospital.

▸ In fact, binding can go both ways:

(7) A boyi read Beowulf, which hei loved.

▸ Quantifiers, alas, still not allowed:

(8) *John, who nearly killed no womani with his car, visited heri
in the hospital.

(9) *No boyi read Beowulf, which hei loved.

▸ Surprising: we see the NRRC semantically interacting with the rest
of the sentence, despite apparent non-interaction observed prior.
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Potts 2005: radical separation

▸ Potts-style parsetree for Sue, who’s smart, bribed Jon, who isn’t:

s bribed j

bribed j

j
●

¬smart j

bribed

s
●

smart s

▸ This representation is interpreted by pruning the bulleted
meanings and conjoining them in a separate dimension.

▸ Worries: non-compositional (à la e.g. DRT), how to get interaction
between the two dimensions? What is special about indefinites?
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AnderBois et al. 2015: no separation

▸ No distinguished dimension for supplemental content.
▸ Distinguish two kinds of updates:

▸ Proposals to update the common ground, subject to negotiation.
▸ Immediate, non-negotiated updates to the common ground.

▸ Proposals associated with at-issue content, impositions with
not-at-issue content (e.g. what’s introduced by a NRRC).

▸ Worry: many of the features that fall out of a two-dimensional
analysis need to be stipulated:

▸ Non-interaction
▸ Types of anchors
▸ Scope of the anchor
▸ Differential binding capabilities of indefinites, true quantifiers
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Upgrading a dynamic semantics?

▸ Something you might hope for: start with a dynamic semantics,
tack on a second dimension, and let the chips fall where they may.
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Example: nondeterminism

▸ It is sometimes useful to entertain multiple values in parallel:

Ja linguistK = {x ∣ lingx}JJohn met a linguistK = {j met x ∣ lingx}

▸ Usual approach is to enrich composition to handle sets:

JABK = {f x ∣ f ∈ JAK ∧ x ∈ JBK}
▸ Another, equally valid possibility is to suppose that alternatives
take scope (Charlow 2015).
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Scoping alternatives

▸ Requires two familiar type-shifters.
▸ First: return is Karttunen 1977’s C○, aka Partee 1986’s ident. It
turns a boring thing into a fancy thing (though still fairly boring).

return x ∶= {x}

▸ Second: >>= turns a setm into a scope-taker by feeding each
member ofm to a scope κ and unioning the resulting sets.

m >>= κ ∶=⋃
x∈m

κx

▸ E.g., {x ∣ linguistx}>>= = λκ. ⋃
linguistx

κx.1

1{x ∣ linguist x}>>= is actually equivalent to the meaning Cresti 1995 assigns to which
linguist, and also crops up in Heim 2000; Ciardelli & Roelofsen to appear.
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Fancy, boring types

▸ Typing judgments, where Fa should be read as “a fancy a”. In this
case, a fancy a is simply a set of a’s, so Fa ∶∶= {a} ∶∶= a→ t:

return ∶∶ a→ Fa (>>=) ∶∶ Fa→ (a→ Fb)→ Fb

▸ return and >>= build a bridge between fancy things (sets of
alternatives) and boring things (familiar denotations):

m>>=
±

(a→Fb)→Fb

a→Fb
³¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹·¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹µ
(λx.return ... x ... )
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An example

▸ An example of how this works for Johnmet a linguist:

Ft

e→ Ft

Ft

return: j met x

λx

(e→ Ft)→ Ft

{x ∣ lingx}>>=

▸ Gives the expected set of propositions, about different linguists:

{j met x ∣ lingx}

▸ This pattern will be repeated time and again. The alternative
generator takes scope via (>>=), return applies to its remnant.
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State-sensitivity: the Reader monad

▸ Some things (e.g., pronouns) are sensitive to the state at which
they’re evaluated. Suggests the following fancy type:

Fa ∶∶= s→ a

▸ Along with the following monadic operations:

return x ∶= λi. x m >>= κ ∶= λi. κ (mi) i

▸ Example, supposing she0 ∶= λi. i0

she>>=0 (λx.return: x left) = λi. i0 left
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Combining the two: the Reader + Set monad

▸ Wemight even combine nondeterminism and state-sensitivity,
taking fancy a’s to be functions from states into sets of a’s.

Fa = s→ {a}

▸ This in turn implies minimally tweaked versions of return and >>=:

return x ∶= λi.{x} m >>= κ ∶= λi. ⋃
x ∈mi

κx i

▸ Example, supposing a.ling ∶= λi.{x ∣ lingx} and her0 ∶= λi.{i0}.

a.ling>>= (λx.her>>=0 (λy.return: xmet y))
= λi.{xmet i0 ∣ lingx}
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The Monad Slide

▸ Any return , (>>=) deomposes lift (e.g. Partee 1986):

(return x)>>= = liftx = λκ. κ x

▸ They also form something known in category theory & computer
science as amonad (e.g. Moggi 1989; Wadler 1992, 1995).

▸ In general, monads are really good at allowing (arbitrarily) fancy
things to interact with boring things.

▸ See Shan 2002; Giorgolo & Asudeh 2012; Unger 2012; Charlow
2014 for discussions of monads in natural language semantics.
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do-notation

▸ There’s a convenient notation for working with these “LFs”:

do x ←m

y← n

⋮
return:ϕ

= m >>= (λx.n >>= (λy. ⋯ return:ϕ ))

▸ Standard sugaring in Haskell, essentially the “monad
comprehensions” of Wadler 1992.
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Examples of do-notation

▸ An example with alternatives (using the Set monad):

do x← {x ∣ lingx}
return: j met x

= {j met x ∣ lingx}

▸ An example with state-sensitivity (using the Reader monad):

do x← λi. i0
return: j met x

= λi. j met i0

▸ And an example with both (using the Reader + Set monad):

do x ← λi.{x ∣ lingx}
y← λi.{i0}
return: xmet y

= λi.{xmet i0 ∣ lingx}
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Dynamics: basic data

▸ A familiar data point: Indefinites behave more like names than
quantifiers with respect to anaphoric phenomena.

(10) {Pollyi, a linguisti, *every linguisti} came in. Shei sat.
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Discourse referents
▸ Dynamic semantics: sentences add discourse referents to the
“conversational scoreboard” (e.g. Groenendijk & Stokhof 1991):

i JPolly came inK i + p

▸ Indefinites (but not quantifiers) also set up discourse referents. In
case four linguists came in — a, b, c, and d — we’ll have:

i Ja linguist came inK
i + d

i + c

i + b

i + a

▸ Formally captured by modeling meanings as relations on states.
For example, here is a candidate meaning for a linguist came in:

λi.{i + x ∣ linguistx ∧ camex}
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Folding in dynamics

▸ It’s straightforward to fold dynamics into the monadic perspective.
▸ Dynamics relies on the ability to output modified assignments
(indeed, given indefinites, to output alternative assignments).

▸ One way to think of this is in terms of a new “fancy” type:

Fa ∶∶= s→ {⟨a, s⟩}

▸ An upgrade from the previous semantics, where Fa ∶∶= s→ {a}.
▸ The monadic operations again essentially follow from the types:

return: x ∶= λi.{⟨x, i⟩} m >>= κ ∶= λi. ⋃
⟨x,j⟩ ∈mi

κx j
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Basic meanings

▸ Meaning for an indefinite:

a.ling = λi.{⟨x, i⟩ ∣ lingx}

▸ And pronouns (where i0 is the most recently introduced dref in i):

she0 = λi.{⟨i0, i⟩}
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Binding

▸ Introducing drefs for thirsty pronouns can happen modularly:

m▸= do x←m

λi. (return x) i+x

▸ Example of how this works for an indefinite:

a.ling▸ = λi.{⟨x, i + x⟩ ∣ lingx}

▸ We can also ▸-shift simple type e individuals injected into the
monad with return:

(return:m)▸ = λi.{⟨m, i +m⟩}
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Dynamic binding via LF pied-piping
▸ Remarkably, rejiggering the semantics in this way predicts that
dynamic binding arises via a kind of “LF pied-piping”:

S

Λ

S

Λ

S

return: p and q

λq

S>>=

she0 sat

λp

S>>=

a linguist ▸ came in

▸ Unlike standard dynamic approaches, this derivation doesn’t
require a notion of dynamic conjunction.

▸ In keeping with the approach I’ve been advocating, conjunction is
boring and interacts with fancy things via return and >>=.
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From another angle

▸ The “LF” from the last slide, in terms of do-notation:

do p← (do x← a.ling▸

return: leftx)
q← (do y← she0

return: tiredy)
return: p ∧ q

▸ The result here is equivalent to:

do x← a.ling▸

return: leftx ∧ tiredx
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Closure

▸ Important part of any dynamic semantics: operators that quantify
over alternatives. Usually: negation, things defined in terms of it.

▸ Negation, type Ft→ Ft:

not = λm.λi.{⟨¬∃π ∈mi ∶ π0, i⟩}

▸ Universals, cf. ¬∃¬ϕ, type (e→ Ft)→ Ft:

every.ling = λκ.not (do x← a.ling
not (κx) )

▸ Equivalent rendering of the universal:

λκ. λi.{⟨∀x ∈ ling ∶ ∃π ∈ κx i ∶ π0, i⟩}
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Writer: the monad for supplemental content

▸ Giorgolo & Asudeh 2012 point out that theWritermonad is useful
for modeling 2-dimensional content.

▸ Things in theWriter monad are pairs of values and some
supplemental content:

Fa = a ● t

▸ Where ● is just the pair constructor, i.e. ⟨⋅ , ⋅⟩. I use it to visually
distinguish, and to emphasize the connection with Potts 2005.

▸ Injection is pairing a value with a trivial supplement. Sequencing
involves conjoining supplemental content.

return x ∶= x ● ⊺ x ● p >>= κ ∶= v ● p∧q
where v ● q = κx
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CombiningWriter with dynamics

▸ A fancy a can harbor nondeterminism, state-changing, and now,
supplemental content:

Fa ∶∶= s→ {⟨a ● t, s⟩}

▸ Monadic operations are expressed in terms of the “underlying”
dynamic monad:

return: x ∶= return: x ● ⊺ m >>= κ ∶= do x ● p←m

v ● q← κx

return: v ● p∧q

▸ De-sugared version of sequencing:

λi.{⟨v ● p∧q,h⟩ ∣ ⟨x ● p, j ⟩ ∈mi ∧
⟨v ● q,h⟩ ∈ κx j }
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Where we’re headed

▸ John, who is a linguist (Fe):

return: j ● ling j

▸ A friend of mine, who is a linguist (Fe):

do x← a.friend
return: x ● lingx

▸ Sequencing any of these Fe’s with the rest of the sentence:

do x←m

return: leftx

▸ No problem for supplemental things to interact with boring things.
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Dynamic interactions

▸ Key bit: Writer + Dynamic monad is still a State monad!
▸ This means it is totally kosher to sequence something in the
dynamic monad with aWriterT dynamic program:

do x←m

do ...... ✓

▸ A trivial but revealing example — lifting a Fe into a Fe:

do x← a.ling▸

return x
= λi.{⟨x ● ⊺, i + x⟩ ∣ lingx}

▸ Indeed, any Fa can be turned into a Fa, and any a into an Fa.
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Comma

▸ Semantics for the comma intonation — turns a restrictive relative
clause into a non-restrictive relative.

commaκ = λx. do p← κx

return: x ● p

▸ Type: (e→ Ft)→ e→ Fe
▸ De-sugared (notice that the type is e→ Fe):

λx. λi.{⟨x ● p, j⟩ ∣ ⟨p, j⟩ ∈ κx i}
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Basic example

▸ A structure for John, who’s smart:2

Fe

e→ Fe

e→ Ft

who’s smart

(e→ Ft)→ e→ Fe

comma

e

John

▸ Composing up via simple functional application, we end up with
the following, as expected:

comma (λx. return: smartx) j = λi.{⟨j ● smart j, i⟩}
= return: j ● smart j

2Suppressing derivation of the relative clause, but see Charlow 2014 for details.
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Bridging the monads
▸ Can now fold in an indefinite, similarly:

Fe

e→ Fe

Fe

e→ Fe

e→ Ft

who’s smart

(e→ Ft)→ e→ Fe

comma

e

x

λx

(e→ Fe)→ Fe

a linguist>>=

▸ Yields the following meaning (again, composing by simple FA):

do x← a.ling▸

comma (λx.return: smartx)x
▸ Bottles up a nondeterministic value, supplement, updated state:

= λi.{⟨x ● smartx, i+x⟩ ∣ lingx}
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Independence

▸ Why do universals, negation, etc. appear not to interact with
appositive content?

▸ Their types are incompatible! E.g. universal needs to take scope
over a (e→ Ft)→ Ft! It can’t do anything with an e→ Ft.

▸ For exactly the same reason, it is impossible to anchor a NRRC to a
universal. The types just don’t fit.

▸ More generally, it appears that we don’t require any meanings
with negative occurrences of Fa types (save for “grammatical”
operations like return, >>=, and perhaps λ).

▸ This very closely mirrors the situation in Potts 2005.
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Scope of the anchor

▸ Works for the same reason.
▸ Type of e.g. negation: Ft→ Ft.
▸ There is just no way to combine this with an Ft. The negation
doesn’t know what to do with the extra dimension of content!

▸ But that’s the only way for negation to scope over an
indefinite-anchored NRRC! And that just won’t work.
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Binding into a NRRC

▸ A linguist knows John, who likes her:

do x← a.ling▸

do y← λi.{⟨j ● j likes i0, i⟩}
return: x knows y

▸ Evaluated and de-sugared:

λi.{⟨x knows j ● j likes x, i + x⟩ ∣ lingx}

▸ The important bit: a.ling▸ can bind into the appositive because it
makes sense to sequence a Fawith a Fa (here, Fe and Ft).

▸ Again, the reason is that any Fa is a Fa ● t.
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Binding out of a NRRC

▸ John, who knows a linguist, likes her:

do x← λi.{⟨j ● j knows v, i + v⟩ ∣ ling v}
y← (do z← her0

return: z)
return: x likes y

▸ Evaluated and de-sugared:

λi.{⟨j likes v ● j knows v, i + v⟩ ∣ ling v}
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No binding for true quantifiers

▸ For, e.g., a universal to bind into an appositive, the universal
would need to take scope over the appositive.

▸ Again, their types are incompatible. A universal needs to take
scope over a (e→ Ft)→ Ft! It can’t do anything with an e→ Ft.

▸ For, e.g., a universal to bind out of an appositive, you’d need the
universal to be externally dynamic. Which it isn’t:

every.ling = λκ.not (do x← a.ling
not (κx) )
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Exceptional scope

▸ Since the theory I’ve proposed relies on scope-taking, you might
expect that we have to appeal to exceptional scope-taking to
explain cases when an NRRC occurs in an island.

▸ Well, yes and no. We do, but exceptional scope actually just falls
out of the monadic approach. See Charlow 2014, 2015 for details.
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Wrapping up

▸ Super natural to enrich the dynamic monad (nondeterminism and
state) with supplemental content.

▸ Involves nothing but theWriterT transform and a semantics for the
comma intonation!

▸ Predicts a number of properties of NRRCs:
▸ Independence/non-interaction
▸ Which things can bind into and out of appositives, which can’t
▸ Scope of the anchor

▸ Fully compositional. No need for a representation language —
direct model-theoretic interpretation.

▸ Everything happens via functional application, with monadic
combinators greasing the compositional skids.
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