The scope of alternatives

Simon Charlow

Rutgers, The State University of New Jersey

SALT 25 Stanford May 15, 2015

Goals for today

- Sketch a new kind of alternative semantics, where alternatives interact with their semantic context by taking scope.
- Show why we should prefer this kind of approach to standard varieties of alternative semantics:
 - More compositional
 - Better predictions when multiple sources of alternatives
 - A more robust treatment of binding
 - Super modular, extensible (e.g., if we have time, to dynamics)
- I'll focus on English indefinites, but much of what follows is applicable in other domains where alternatives have been argued to offered insight (e.g. questions, focus, indeterminate pronouns).

Standard alternative semantics

Composing sets Why alternatives?

Proposal: alternatives take scope

Basic pieces
Deriving exceptional scope

Why scope?

Compositionality Selectivity Binding

Horizons

Standard alternative semantics

Composing sets

Why alternatives?

Proposal: alternatives take scope

Basic pieces

Deriving exceptional scope

Why scope?

Compositionality Selectivity Binding

Horizons

Alternative semantics

- Some expressions introduce alternatives into the semantics, causing us to calculate a number of meanings in parallel.
- E.g., indefinites might be taken to denote **sets of individuals**:

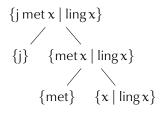
$$[a linguist]^i = \{x | linguist x\}$$

Cf. the standard generalized-quantifier semantics:

[a linguist]
$$^{i} = \lambda \kappa$$
. $\exists x$. linguist $x \wedge \kappa x$

Composing alternatives

- ▶ Compositional challenge: $[a \text{ linguist}]^i$ is type $e \to t$, but occurs in places where something of type e standardly expected.
- ▶ The usual way to go: first, suppose that **everything** denotes a set:


$$[\![\mathsf{John}]\!]^{\mathfrak{i}} = \{ j \} \qquad [\![\mathsf{met}]\!]^{\mathfrak{i}} = \{ \mathsf{met} \} \qquad [\![\mathsf{a \ ling}]\!]^{\mathfrak{i}} = \{ x \mid \mathsf{ling} \, x \}$$

Then, to compose these sets, use *point-wise* functional application (**PWFA**) (e.g. Hamblin 1973; Rooth 1985):

$$[\![A\ B]\!]^i = \big\{fx \mid f \in [\![A]\!]^i \land x \in [\![B]\!]^i\big\}$$

An example

A basic example, John met a linguist:

As we climb the tree, the alternatives expand, eventually yielding a set of propositions, one per linguist.

Standard alternative semantics

Composing sets

Why alternatives?

Proposal: alternatives take scope

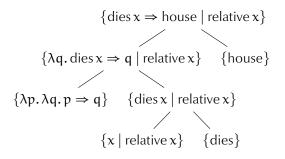
Basic pieces

Deriving exceptional scope

Why scope?

Compositionality Selectivity Binding

Horizons


Why alternatives? Why PWFA?

- A standard motivation since Rooth 1985: *insensitivity to islands*.
- Each of the following can be interpreted in a way that gives the **bolded** thing apparent scope outside a syntactic (island).
 - (1) If $\langle a \text{ rich relative of mine dies} \rangle$, I'll inherit a house. $(\exists > if)$
 - (2) I only complain when (BILL leaves the lights on).
 - (3) Taro-wa (dare-ga katta mochi-o) tabemasita ka?
 Taro-тор who-nom bought rice cake-ACC ate Q
 'Who is the x such that Taro ate rice cakes that x bought?'

[Examples after Reinhart 1997; Rooth 1996; Kratzer & Shimoyama 2002]

Getting traction on island-insensitivity

Island-insensitivity is a consequence of PWFA. Here's an alternatives-based derivation of the *relative-of-mine* conditional:

► The indefinite acquires a kind of "scope" over the conditional, yielding various conditional propositions "about" various relatives.

Standard alternative semantics

Composing sets Why alternatives?

Proposal: alternatives take scope

Basic pieces

Deriving exceptional scope

Why scope?

Compositionality Selectivity Binding

Horizons

Standard alternative semantics

Composing sets Why alternatives?

Proposal: alternatives take scope

Basic pieces

Deriving exceptional scope

Why scope?

Compositionality Selectivity Binding

Horizons

Proposal summarized

- My proposal: **no** PWFA, **no** ubiquitous lexical sets.
- Instead, resolve the type mismatch introduced by a set of alternatives by scoping it (cf. quantifiers in object position)!
- Allows us to reframe (and *generalize*) the compositional issue to a
 problem of integrating fancy things (e.g., things that denote sets)
 with boring things (e.g., things that do not).

Greasing the skids

- All this requires is two type-shifters. And they're already familiar!
- First: \odot is Karttunen 1977's C_o , aka Partee 1986's IDENT. It turns a boring thing into a fancy thing (though still fairly boring).

$$x = \{x\}$$

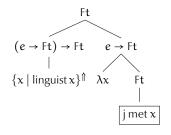
 Second: -¹ turns a set m into a scope-taker by feeding each member of m to a scope κ and unioning the resulting sets.

$$m^{\uparrow} = \lambda \kappa. \bigcup_{x \in m} \kappa x$$

► E.g., $\{x \mid \text{linguist } x\}^{\uparrow} = \lambda \kappa. \bigcup_{\text{linguist } x} \kappa x.^{1}$

 $⁽x \mid \text{linguist } x)^{\uparrow}$ is actually equivalent to the meaning Cresti 1995 assigns to *which linguist*, and also crops up in Heim 2000; Ciardelli & Roelofsen to appear.

Fancy, boring types


► Typing judgments, where Fa should be read as "a fancy a". In this case, a fancy a is simply a set of a's, so Fa \coloneqq {a} \coloneqq a \to t:

▶ and · build a bridge between fancy things (sets of alternatives) and boring things (familiar denotations). Schematically:

$$\underbrace{\mathfrak{m}^{\uparrow}}_{(a \to Fb) \to Fb} \underbrace{\left(\lambda x. \left[\dots x \dots\right]\right)}_{}$$

An example

An example of how this works to derive the same result as PWFA for *John met a linguist*:

Gives the expected set of propositions, about different linguists:

$$\{j \text{ met } x \mid \text{linguist } x\}$$

This pattern will be repeated time and again. The alternative generator takes scope via [↑], and → applies to its remnant.

Multiple alternative generators

Cases with multiple sources of alternatives such as a linguist met a philosopher require two applications of .[↑], and two scopings:

a.linguist^{$$\uparrow$$} (λx . a.philosopher ^{\uparrow} (λy . $x met y$))
$$= \{x met y \mid linguist x \land philosopher y\}$$

▶ This is the same result PWFA would give.

Getting closure

We can define a categorematic closure operation to extract a truth-condition from a set of propositions:

$$!m = \exists p \in m.p$$

For example, applying ! to what we obtained for a linguist met a philosopher yields:

 $\exists x. \text{ linguist } x \land \exists y. \text{ philosopher } y \land x \text{ met } y$

The Monad Slide

▶ ind · are decompositions of LIFT (e.g. Partee 1986):

$$x$$
 = LIFT $x = \lambda \kappa$. κx

- ▶ They also form something known in category theory & computer science as a monad (e.g. Moggi 1989; Wadler 1992, 1995).
 - In general, monads are really good at allowing (arbitrarily) fancy things to interact with boring things.
 - See Shan 2002; Giorgolo & Asudeh 2012; Unger 2012; Charlow 2014 for discussions of monads in natural language semantics.

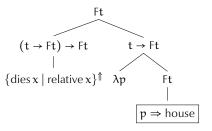
Standard alternative semantics

Composing sets Why alternatives?

Proposal: alternatives take scope

Basic pieces

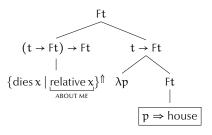
Deriving exceptional scope


Why scope?

Compositionality Selectivity Binding

Horizons

Exceptional scope?


- Since we manage alternatives via scope, it may appear as if we have given up an account of exceptional scope-taking:
 - (4) If (a rich relative of mine dies), I'll inherit a house.
- In fact, this is not so! The grammar generates an exceptional scope reading for this case by scoping the island:

▶ The result is the same set of alternatives derived by PWFA:

$$\{\text{dies } x \Rightarrow \text{house } | \text{ relative } x\}$$

Why does this work?

- ► The alternativeness induced by the indefinite is inherited by the island, and then transmitted to the conditional via . ↑.
- In other words, the island is "about" relatives in **the same way** as the indefinite! · ↑ simply passes this aboutness to the conditional.
- So we explain exceptional scope as the result of LF pied-piping (Nishigauchi 1990; von Stechow 1996): movement of the island gives the appearance of exceptional scope for things on the island.

Standard alternative semantics

Composing sets Why alternatives?

Proposal: alternatives take scope

Basic pieces
Deriving exceptional scope

Why scope?

Compositionality Selectivity Binding

Horizons

Standard alternative semantics

Composing sets Why alternatives?

Proposal: alternatives take scope

Basic pieces
Deriving exceptional scope

Why scope?

Compositionality

Selectivity Binding

Horizons

Compositionality (YMMV)

The semantics is more compositional than PWFA-based grammars, which rely on syncategorematic rules for (e.g.) closure operations (see e.g. Rooth 1992; Kratzer & Shimoyama 2002):

$$[\![!X]\!]_{\mathsf{PWFA}}^g = \big\{\exists p \in [\![X]\!]^g.p\big\}$$

The reason: PWFA-style grammars are simply built to point-wise compose sets. If ever you want to do anything else (like quantify over a set), you need a new composition rule.

Standard alternative semantics

Composing sets
Why alternatives?

Proposal: alternatives take scope

Basic pieces
Deriving exceptional scope

Why scope?

Compositionality
Selectivity
Binding

Horizons

Selective exceptional scope

- Datum: indefinites can take selective scope outside islands. E.g., the following allows an any-old-lawyer, one-rich-relative reading:
 - (5) If (a good lawyer visits a relative of mine), I'll get a house!
- PWFA doesn't do selective scope-taking, since it only generates flat alternative sets:

$$[\![\langle \cdots \rangle]\!]_{PWFA}^i = \{x \text{ visits } y \mid \text{lawyer } x \land \text{relative } y\}$$

 Using this set, there's no way to give one indefinite scope over the conditional without bringing the other along for the ride.

More evidence for selectivity

- A closely related case in the domain of focus interpretation (cf. examples in Rooth 1996; Wold 1996; Beck 2006; Krifka 2006):
 - [John only gripes when MARY leaves the lights on]_C, and [JEN only gripes when (SUE leaves the lights on)]_{\sim C}.
- Considering examples like these, Rooth concludes:

[Their] theoretical imact is quite dramatic: the recursive definition of alternatives [SC: i.e. PWFA-based semantics] has no advantage over the scoping approach to the logical form of focus. (Rooth 1996)

It might seem that we're similarly out of luck. Won't scoping a persuasive lawyer visits a relative of mine (type Ft) give both indefinites scope over the conditional?

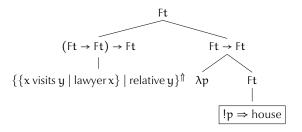
 $\{x \text{ visits } y \mid \text{lawyer } x \land \text{ relative } y\}^{\uparrow} (\lambda p....)$

Selectivity lurks

Truu. However! An alternative derivation for the island lurks.

$$\textbf{a.relative}^{\uparrow}\left(\lambda y. \boxed{\textbf{a.lawyer}^{\uparrow}\left(\lambda x. \boxed{x \text{ visits } y}\right)}\right)$$

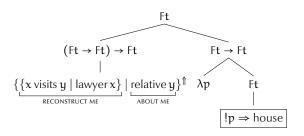
► The key bit is the extra . This gives rise to a *higher-order* alternative set, type FFt (cf. e.g. Dayal 1996, 2002; Fox 2012):


$$\{\{x \text{ visits } y \mid \text{lawyer } x\} \mid \text{relative } y\}$$

▶ I.e., if the lawyers are L_1 and L_2 , and my relatives are R_1 and R_2 :

```
 \begin{aligned} & \big\{ \big\{ \mathsf{L}_1 \text{ visits } \mathsf{R}_1, \mathsf{L}_2 \text{ visits } \mathsf{R}_1 \big\}, \\ & \big\{ \mathsf{L}_1 \text{ visits } \mathsf{R}_2, \mathsf{L}_2 \text{ visits } \mathsf{R}_2 \big\} \big\} \end{aligned}
```

How it works


 LF pied-piping the higher-order alternative set derives the selective exceptional scope reading:

The result is exactly what we're looking for (any-old-lawyer, one-rich-relative):

 $\{(\exists x. \text{lawyer } x \land x \text{ visits } y) \Rightarrow \text{house } | \text{ relative } y\}$

Why it works

- ► The finely-articulated higher-order alternative set lets us separate the relative-alternatives from the lawyer-alternatives.
- The island, when derived in this way, is "about" relatives in a way it isn't about lawyers. .[↑] spreads this aboutness to the conditional.
- ► The "inner" layer of alternatives **semantically reconstructs** (Cresti 1995) i.e., gets sent back down the tree to meet!.

Standard alternative semantics

Composing sets Why alternatives?

Proposal: alternatives take scope

Basic pieces
Deriving exceptional scope

Why scope?

Compositionality Selectivity Binding

Horizons

Abstraction

- Binding creates headaches for PWFA (e.g. Shan 2004; Romero & Novel 2013; Charlow 2014; Ciardelli & Roelofsen to appear).
- E.g., Kratzer & Shimoyama 2002's abstraction definition, below, over-generates alternative functions. $[n X]^i$ is no longer guaranteed to be "about" the same things as $[X]^i$.

$$[[n X]]^{i} = \{f \mid \forall x. f x \in [X]]^{i[n \mapsto x]}\}$$

- Problematic prediction: nobody met a linguist can mean that nobody met every linguist. See Charlow 2014 (§5.5) for details.
- ▶ Jettisoning PWFA in favor of standard FA (with and greasing the skids) gives us access to a standard abstraction operation.

Glass houses, etc.

- Yet it may appear that we have binding issues of our own.
- Ex. (7) has a reading giving the island-bound indefinite widest scope, even as the pronoun on the island is bound by the subject.
 - (7) Every linguist; is overjoyed whenever (a famous expert on indefinites cites her;).
- How is this consistent with our theory? Shouldn't scoping the island over the quantifier unbind the pronoun?

Binding reconstruction

- It's true: we can't handle data like this if binding requires LF c-command (as in e.g. Heim & Kratzer 1998). Given the situation with two indefinites on an island, this comes as a surprise.
- What we require is a (minimal) shift in perspective, to a semantics that allows binding reconstruction à la Sternefeld 1998, 2001.
- The key to binding reconstruction is allowing things to denote functions from assignments into values.
- ▶ An example of how this goes for her i mother, Polly i likes:

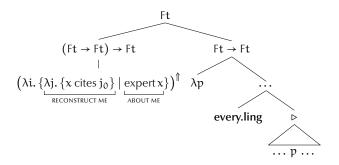
$$\underbrace{ \left(\underbrace{\lambda F. \lambda i. \, p \, \text{likes} \, \left(F \, i^{\left[0 \mapsto p \right]} \right)}_{\text{Polly likes}} \right) \left(\underbrace{\lambda i. \, i_0 \, \text{'s mom}}_{\text{her mom}} \right) }_{\text{her mom}}$$

$$= \lambda i. \, p \, \text{likes} \, p \, \text{'s mom}$$

Generalized fanciness

- Implementing this perspective simply means tweaking our notion of what a "fancy" meaning is.
- Echoing the theory of binding reconstruction, we'll now take fancy α's to be functions from assignments into sets of α's.

$$Fa = s \rightarrow \{a\}$$


▶ This in turn implies minimally tweaked versions of \bigcirc and $^{\^{1}}$:²

$$x = \lambda i. \{x\}$$
 $m^{\uparrow} = \lambda \kappa. \lambda i. \bigcup_{x \in mi} \kappa x i$

²Still a monad, still decompositions of LIFT!

How this works

► The derivation of (7) is **entirely parallel** to the two-indefinites case. We build a higher-order FFt and reconstruct the inner layer:

 The tree invokes ▷, a placeholder for your fave way to do binding (e.g. Partee 1973's Derived VP Rule, Büring 2005's β-binding).

37

Roofing

- We shouldn't be able to wide-scope the indefinite in roofing configurations (e.g. Schwarz 2001; Brasoveanu & Farkas 2011):
 - (8) No candidate_i submitted a paper he_i wrote.
- We make the correct prediction. Here's how we'd go about trying to give this indefinite scope over the subject:

$$(\lambda i. \{y \mid \underbrace{i_0 \text{ wrote } y}_{ABOUT \text{ ME}})^{\uparrow} (\lambda y. \text{ no.cand } (\lambda x. x \text{ submit } y)^{\triangleright})$$

The resulting set of propositions are "about" things that i₀ wrote (given an assignment i). Binding fails!

Roofing (cont.)

This improves on choice-functional accounts of exceptional scope (e.g. Reinhart 1997), which can assign roofed indefinites a kind of wide scope (Schwarz 2001; see also Geurts 2000):

 $\exists f. no. candidate (\lambda x. x submitted (f \{y \mid x wrote y\}))$ \approx no candidate submitted *every* paper he wrote

About which Heim 2011 remarks:

We may have to concede what Fodor and Sag and most subsequent authors wanted to avoid: indefinites are existential quantifiers that enjoy a greater degree of scopal mobility.... (Heim 2011: 1022)

I hope to have shown that we don't have to concede this.

Where we are

Standard alternative semantics

Composing sets Why alternatives?

Proposal: alternatives take scope

Basic pieces
Deriving exceptional scope

Why scope?

Compositionality Selectivity Binding

Horizons

Dynamics (time permitting) Concluding

Where we are

Standard alternative semantics

Composing sets Why alternatives?

Proposal: alternatives take scope

Basic pieces Deriving exceptional scope

Why scope?

Compositionality Selectivity Binding

Horizons

Dynamics (time permitting)

Concluding

Basic data

- A familiar data point: Indefinites behave more like names than quantifiers with respect to anaphoric phenomena.
 - (9) $\{Polly_i, a linguist_i, *every linguist_i\}$ came in. She_i sat.

Discourse referents

 Dynamic semantics: sentences add discourse referents to the "conversational scoreboard" (e.g. Groenendijk & Stokhof 1991):

$$i \longrightarrow \llbracket \text{Polly came in} \rrbracket \longrightarrow i + p$$

► Indefinites (but not quantifiers) also set up discourse referents. In case four linguists came in — a, b, c, and d — we'll have:

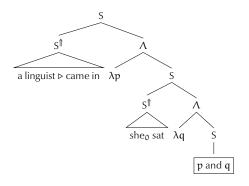
Formally captured by modeling meanings as relations on states. For example, here is a candidate meaning for a linguist came in:

$$\lambda i. \{i + x \mid \text{linguist } x \land \text{came } x\}$$

Extending

- It's straightforward to fold dynamics into the present perspective!
- Dynamics relies on the ability to output modified assignments (indeed, given indefinites, to output *alternative* assignments).
- One way to think of this is in terms of a new "fancy" type:

$$\mathsf{F}\mathfrak{a} \coloneqq s \to \{\langle \mathfrak{a}, s \rangle\}$$


- ▶ An upgrade from the previous semantics, where $Fa := s \rightarrow \{a\}$.

$$x = \lambda i. \{\langle x, i \rangle\}$$
 $m^{\uparrow} = \lambda \kappa. \lambda i. \bigcup_{\langle x, j \rangle \in mi} \kappa x j$

³Still a monad, still decompositions of LIFT!

Dynamic binding via LF pied-piping

 Remarkably, rejiggering the semantics in this way predicts that dynamic binding also arises via a kind of LF pied-piping:

- Unlike standard dynamic approaches, this derivation doesn't require a notion of dynamic conjunction.
 - In keeping with the approach I've been advocating, conjunction is boring and interacts with fancy things via $\boxed{\cdot}$ and $\stackrel{\uparrow}{\cdot}$.

Summing up

Fa	x	m [†]	[a linguist] _{Fe}	[she ₀] _{Fe}
a	x	λκ. κ m	N/A	io
$\{a\}$	{x}	$\lambda \kappa . \bigcup_{x \in m} \kappa x$	$\{x \mid ling x\}$	$\{i_0\}$
$s \to \{\alpha\}$	$\lambda i. \{x\}$	$\lambda \kappa. \bigcup_{x \in mi} \kappa x i$	$\lambda i. \{x \mid ling x\}$	$\lambda i.\left\{ i_{0}\right\}$
$s \to \{\langle \alpha, s \rangle\}$	$\lambda i. \{\langle x, i \rangle\}$	$\lambda \kappa. \bigcup_{(x,j) \in mi} \kappa x j$	$\lambda i. \{\langle x, i \rangle \mid ling x\}$	$\lambda i. \left\{ \left\langle i_0, i \right\rangle \right\}$

Progressively enriching a grammar to handle alternatives, alternatives with assignment-sensitivity, and alternatives with assignment modification.

Where we are

Standard alternative semantics

Composing sets Why alternatives?

Proposal: alternatives take scope

Basic pieces
Deriving exceptional scope

Why scope?

Compositionality Selectivity Binding

Horizons

Dynamics (time permitting Concluding

Concluding

- My bottom line: if you want alternatives, let them take scope.⁴
- ▶ i and i allow a robust account of alternatives, avoiding many of the pitfalls of PWFA (and other theories of exceptional scope).
- The approach is really flexible:
 - Folding in dynamics is a piece of cake.
 - Suggests that dynamic and alternative semantics have all along been palping different parts of the indefiniteness elephant.

⁴The centrality of scope-taking to natural language semantics has likewise been emphasized in work on *continuations* (e.g. Barker & Shan 2014).

Last words

▶ I focused on English indefinites, but the same strategy allows us to give parallel, empirically robust accounts of focus and in situ wh:

The group of island-escaping operators does not appear to be an arbitrary one.... [Their] semantic similarity, together with the common insensitivity to scope islands, suggest that we should not be satisfied with a theory which treats focus as sui generis. We would like to replace the focus-specific definition with a theory in which focus is one of a family of island-insensitive operators which, roughly, use restricted variables to name families of propositions, open propositions, and/or their existential closures. It is not at all clear to me how this should be done. (Rooth 1996)

► I hope to have shed some light on this. Thanks!

References

- Barker, Chris & Chung-chieh Shan. 2014. *Continuations and Natural Language*. Oxford: Oxford University Press.
- Beck, Sigrid. 2006. Intervention effects follow from focus interpretation. *Natural Language Semantics* 14(1). 1–56.
- Brasoveanu, Adrian & Donka F. Farkas. 2011. How indefinites choose their scope. *Linguistics and Philosophy* 34(1). 1–55.
- Büring, Daniel. 2005. Binding Theory. New York: Cambridge University Press.
- Charlow, Simon. 2014. On the semantics of exceptional scope: New York University Ph.D. thesis.
- Ciardelli, Ivano & Floris Roelofsen. to appear. Alternatives in Montague Grammar. In *Proceedings* of Sinn und Bedeutung 19, .
- Cresti, Diana. 1995. Extraction and reconstruction. Natural Language Semantics 3(1). 79-122.
- Dayal, Veneeta. 1996. Locality in wh quantification. Dordrecht: Springer Science+Business Media.
- Dayal, Veneeta. 2002. Single-pair versus multiple-pair answers: Wh-in-situ and scope. *Linguistic Inquiry* 33(3). 512–520.
- Fox, Danny. 2012. Lectures on the semantics of questions. Unpublished lecture notes.
- Geurts, Bart. 2000. Indefinites and choice functions. Linguistic Inquiry 31(4). 731–738.
- Giorgolo, Gianluca & Ash Asudeh. 2012. (M, η, *): Monads for conventional implicatures. In Ana Aguilar Guevara, Anna Chernilovskaya & Rick Nouwen (eds.), *Proceedings of Sinn und Bedeutung 16*, 265–278. MIT Working Papers in Linguistics.

References (cont.)

- Groenendijk, Jeroen & Martin Stokhof. 1991. Dynamic predicate logic. *Linguistics and Philosophy* 14(1). 39–100.
- Hamblin, C. L. 1973. Questions in Montague English. Foundations of Language 10(1). 41-53.
- Heim, Irene. 2000. Notes on Interrogative Semantics. Unpublished lecture notes.
- Heim, Irene. 2011. Definiteness and indefiniteness. In Klaus von Heusinger, Claudia Maienborn & Paul Portner (eds.), *Semantics: An International Handbook of Natural Language Meaning*, vol. 33 (HSK 2), chap. 41, 996-1025. Berlin: de Gruyter.
- Heim, Irene & Angelika Kratzer. 1998. Semantics in generative grammar. Oxford: Blackwell.
- Karttunen, Lauri. 1977. Syntax and semantics of questions. Linguistics and Philosophy 1(1). 3-44.
- Kratzer, Angelika & Junko Shimoyama. 2002. Indeterminate Pronouns: The View from Japanese. In Yukio Otsu (ed.), *Proceedings of the Third Tokyo Conference on Psycholinguistics*, 1–25. Tokyo: Hituzi Syobo.
- Krifka, Manfred. 2006. Association with Focus Phrases. In Valéria Molnár & Susanne Winkler (eds.), *The Architecture of Focus*, 105–136. Mouton de Gruyter.
- Moggi, Eugenio. 1989. Computational lambda-calculus and monads. In *Proceedings of the Fourth Annual Symposium on Logic in computer science*, 14–23. Piscataway, NJ, USA: IEEE Press.
- Nishigauchi, Taisuke. 1990. *Quantification in the Theory of Grammar*. Dordrecht: Kluwer Academic Publishers.
- Partee, Barbara H. 1973. Some transformational extensions of Montague grammar. *Journal of Philosophical Logic* 2(4). 509–534.

References (cont.)

- Partee, Barbara H. 1986. Noun phrase interpretation and type-shifting principles. In Jeroen Groenendijk, Dick de Jongh & Martin Stokhof (eds.), *Studies in Discourse Representation Theory and the Theory of Generalized Quantifiers*, 115–143. Dordrecht: Foris.
- Reinhart, Tanya. 1997. Quantifier Scope: How labor is Divided Between QR and Choice Functions. Linguistics and Philosophy 20(4). 335–397.
- Romero, Maribel & Marc Novel. 2013. Variable Binding and Sets of Alternatives. In Anamaria Fălăuș (ed.), *Alternatives in Semantics*, chap. 7, 174–208. Houndsmills, Basingstoke, Hampshire: Palgrave Macmillan.
- Rooth, Mats. 1985. Association with focus: University of Massachusetts, Amherst Ph.D. thesis.
- Rooth, Mats. 1992. A theory of focus interpretation. Natural Language Semantics 1(1). 75–116.
- Rooth, Mats. 1996. Focus. In Shalom Lappin (ed.), *The Handbook of Contemporary Semantic Theory*, 271–298. Oxford: Blackwell.
- Schwarz, Bernhard. 2001. Two kinds of long-distance indefinites. In Robert van Rooy & Martin Stokhof (eds.), *Proceedings of the Thirteenth Amsterdam Colloquium*, 192–197. University of Amsterdam.
- Shan, Chung-chieh. 2002. Monads for natural language semantics. In Kristina Striegnitz (ed.), Proceedings of the ESSLLI 2001 Student Session, 285–298.
- Shan, Chung-chieh. 2004. Binding alongside Hamblin alternatives calls for variable-free semantics. In Kazuha Watanabe & Robert B. Young (eds.), *Proceedings of Semantics and Linguistic Theory 14*, 289–304. Ithaca, NY: Cornell University.

References (cont.)

- von Stechow, Arnim. 1996. Against LF Pied-Piping. Natural Language Semantics 4(1). 57–110.
- Sternefeld, Wolfgang. 1998. The semantics of reconstruction and connectivity. Arbeitspapier 97, SFB 340. Universität Tübingen and Universität Stuttgart, Germany.
- Sternefeld, Wolfgang. 2001. Semantic vs. Syntactic Reconstruction. In Christian Rohrer, Antje Roßdeutscher & Hans Kamp (eds.), *Linguistic Form and its Computation*, 145–182. Stanford: CSLI Publications.
- Unger, Christina. 2012. Dynamic Semantics as Monadic Computation. In Manabu Okumura, Daisuke Bekki & Ken Satoh (eds.), *New Frontiers in Artificial Intelligence JSAI-isAI 2011*, vol. 7258 Lecture Notes in Artificial Intelligence, 68–81. Springer Berlin Heidelberg.
- Wadler, Philip. 1992. Comprehending monads. In Mathematical Structures in Computer Science, vol. 2 (special issue of selected papers from 6th Conference on Lisp and Functional Programming), 461-493.
- Wadler, Philip. 1995. Monads for functional programming. In Johan Jeuring & Erik Meijer (eds.), Advanced Functional Programming, vol. 925 Lecture Notes in Computer Science, 24–52. Springer Berlin Heidelberg.
- Wold, Dag E. 1996. Long distance selective binding: The case of focus. In Teresa Galloway & Justin Spence (eds.), Proceedings of Semantics and Linguistic Theory 6, 311–328. Ithaca, NY: Cornell University.