The grammar of exceptional scope

Simon Charlow

Rutgers, The State University of New Jersey

Cornell Linguistics Colloquium • November 5, 2015

[slides at tiny.cc/cornel1]

1

Goals for today

- Give a general theory of the **exceptional scope** behavior of indefinites, focus, and *wh*-in-situ.
- Based on a new kind of **alternative semantics**, where alternatives interact with their semantic context by **taking scope**.
- I'll argue that we should prefer this kind of approach to standard varieties of alternative semantics:
 - More compositional
 - Better predictions when multiple sources of alternatives
 - A more robust treatment of binding
 - Super modular, extensible (e.g., if we have time, to dynamics)

Islands and alternatives

Exceptional scope Standard alternative semantics

Proposal: alternatives take scope

Basic pieces Deriving exceptional scope

Why scope?

Compositionality Selectivity Binding

Horizons

Islands and alternatives

Exceptional scope

Standard alternative semantics

Proposal: alternatives take scope

Basic pieces Deriving exceptional scope

Why scope?

Compositionality Selectivity Binding

Horizons

Some data

- Each of the following can be interpreted in a way that gives the **bolded** thing apparent scope outside a syntactic (island).
 - (1) If $\langle a \text{ rich relative of mine dies} \rangle$, I'll inherit a house. $(\exists > if)$
 - (2) I only complain when **(BILL** leaves the lights on).
 - (3) Taro-wa (dare-ga katta mochi-o) tabemasita ka? Taro-top who-nom bought rice cake-acc ate Q 'Who is the x such that Taro ate rice cakes that x bought?'

[Examples after Reinhart 1997; Rooth 1996; Kratzer & Shimoyama 2002]

What we might hope for

- Rooth (1985, 1992, 1996) developed a theory that countenanced island-sensitivity for focus (more on that theory shortly).
- However:

The group of island-escaping operators does not appear to be an arbitrary one.... [Their] semantic similarity, together with the common insensitivity to scope islands, suggest that we should not be satisfied with a theory which treats focus as sui generis. (Rooth 1996)

- To date, hasn't happened:
 - Extant accounts are piecemeal accounts.
 - Even so, they over- and/or under- generate for their more narrowly construed empirical domains.

Islands and alternatives

Exceptional scope Standard alternative semantics

Proposal: alternatives take scope

Basic pieces Deriving exceptional scope

Why scope?

Compositionality Selectivity Binding

Horizons

Alternative semantics

- Some expressions introduce alternatives into the semantics, causing us to calculate a number of meanings in parallel.
- E.g., indefinites might be taken to denote sets of individuals:

 $\llbracket a \text{ linguist} \rrbracket^g = \{x \mid LING x\}$

Cf. the standard generalized-quantifier semantics:

 $\llbracket a \text{ linguist} \rrbracket^g = \lambda \kappa. \exists x. \text{ling } x \land \kappa x$

Composing alternatives

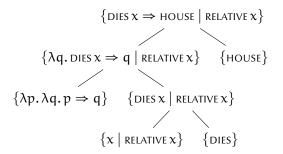
- Compositional challenge: $[a \text{ linguist}]^g$ is type $e \rightarrow t$, but occurs in places where something of type e standardly expected.
- > The usual way to go: first, suppose that everything denotes a set:

 $\llbracket John \rrbracket^g = \{J\} \qquad \llbracket met \rrbracket^g = \{met\} \qquad \llbracket a \text{ ling} \rrbracket^g = \{x \mid ling x\}$

Then, to compose these sets, use *point-wise* functional application (PWFA) (e.g. Hamblin 1973; Rooth 1985):

 $\llbracket A B \rrbracket^{9} = \{ f x \mid f \in \llbracket A \rrbracket^{9} \land x \in \llbracket B \rrbracket^{9} \}$

An example


• A basic example, John met a linguist:

 $\{MET x | LING x\}$ J {Met x | Ling x} $\{MET\}$ $\{x \mid LING x\}$

 As we climb the tree, the alternatives expand, eventually yielding a set of propositions, one per linguist.

Getting traction on island-insensitivity

Island-insensitivity is a consequence of PWFA. Here's an alternatives-based derivation of the *relative-of-mine* conditional:

 The indefinite acquires a kind of "scope" over the conditional, yielding various conditional propositions "about" various relatives.

Islands and alternatives

Exceptional scope Standard alternative semantics

Proposal: alternatives take scope

Basic pieces Deriving exceptional scope

Why scope?

Compositionality Selectivity Binding

Horizons

Islands and alternatives

Exceptional scope Standard alternative semantics

Proposal: alternatives take scope

Basic pieces

Deriving exceptional scope

Why scope?

Compositionality Selectivity Binding

Horizons

Proposal summarized

- In general, when we posit enriched meanings (e.g., sets of alternatives), we have a choice:
 - A fancier lexicon, enriched modes of composition (i.e., PWFA).
 - Greasing the skids some other way.
- My proposal: door #2. No PWFA, no ubiquitous lexical sets.
- Instead, resolve the type mismatch introduced by a set of alternatives by scoping it (cf. quantifiers in object position)!
- Allows us to reframe (and *generalize*) the compositional issue to a problem of integrating **fancy** things (e.g., things that denote sets) with **boring** things (e.g., things that do not).

Greasing the skids

- All this requires is a couple **type-shifters**.
- ▶ First, ⊡ turns a boring thing into a (minimally) fancy thing:

$$x \coloneqq \{x\}$$

 Second: ·* turns a set m into a scope-taker by feeding each member of m to a scope κ and unioning the resulting sets.

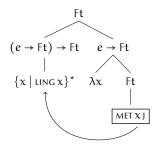
$$\mathfrak{m}^{\star} \coloneqq \lambda \kappa . \bigcup_{\mathfrak{x} \in \mathfrak{m}} \kappa \mathfrak{x}$$

• \Box and \cdot^* entail PWFA:

$$\mathfrak{m}^{\star}\left(\lambda f. \mathfrak{n}^{\star}\left(\lambda x. f x\right)\right) = \{f x \mid f \in \mathfrak{m} \land x \in \mathfrak{n}\}$$

Fancy, boring types

Typing judgments, where Fa should be read as "a fancy a". In this case, a fancy a is simply a set of a's, so Fa = {a} = {a} = t:


$$:: a \to Fa \qquad \cdot^* :: Fa \to (a \to Fb) \to Fb$$

▶ • • and ·* build a bridge between fancy things (sets of alternatives) and boring things (familiar denotations). Schematically:

$$\underbrace{\mathbb{m}^{\star}}_{(a \to Fb) \to Fb} \left(\lambda x. \boxed{\ldots x \ldots} \right)$$

An example

• An example of how this works to derive the same result as PWFA for *John met a linguist*:

• Gives the expected set of propositions, about different linguists:

 $\left\{\mathsf{MET}\, x\,\mathsf{J} \;\middle|\; \mathsf{LING}\, x\right\}$

► This pattern will be repeated time and again. The alternative generator takes scope via ·*, and ⊡ applies to its remnant.

Multiple alternative generators

Cases with multiple sources of alternatives such as a linguist met a philosopher require two applications of ·*, and two scopings:

$$A-LING^{*} (\lambda x. A-PHIL^{*} (\lambda y. MET y x))$$
$$= \{MET y x \mid LING x \land PHIL y\}$$

This is the same result PWFA would give.

Getting closure

We can define a categorematic closure operation to extract a truth-condition from a set of propositions:

 $!m \coloneqq \exists p \in m.p$

• For example, applying ! to what we obtained for *a linguist met a philosopher* yields:

 $\exists x. \text{Ling } x \land \exists y. \text{Phily} \land \text{Mety} x$

Islands and alternatives

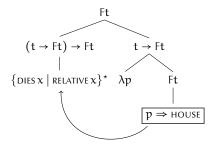
Exceptional scope Standard alternative semantics

Proposal: alternatives take scope

Basic pieces Deriving exceptional scope

Why scope?

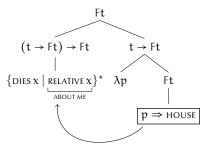
Compositionality Selectivity Binding


Horizons

Exceptional scope?

Since we manage alternatives via scope, it may appear as if we have given up an account of exceptional scope-taking:

(4) If **(a rich relative of mine** dies**)**, I'll inherit a house.


• In fact, this is not so! The grammar generates an exceptional scope reading for this case by *scoping the island*:

> The result is the same set of alternatives derived by PWFA:

 $\{ \text{dies } x \Rightarrow \text{house } | \text{ relative } x \}$

Why does this work?

- The alternativeness induced by the indefinite is inherited by the island, and then transmitted to the conditional via ·*.
- In other words, the island is "about" relatives in the same way as the indefinite! ·* simply passes this aboutness to the conditional.
- So we explain exceptional scope as the result of LF pied-piping (Nishigauchi 1990; von Stechow 1996): movement of the island gives the appearance of exceptional scope for things on the island.

Antecedents

- These shifters are already familiar!
- ▶ ⊡ is Karttunen 1977's C₀, aka Partee 1986's ident.
- $\{x \mid \text{LING } x\}^* = \lambda \kappa$. $\bigcup_{\text{LING } x} \kappa x$ is the meaning Cresti 1995 assigns to *which linguist* (see also Heim 2000; Ciardelli & Roelofsen 2015).
 - ▶ But none of these folks factor out ·* separately.

The Monad Slide

• \Box and \cdot^* are decompositions of LIFT (e.g. Partee 1986):

$$x^* = \text{LIFT } x = \lambda \kappa. \kappa x$$

- They also form something known in category theory & computer science as a monad (e.g. Moggi 1989; Wadler 1992, 1995).
 - In general, monads are *really* good at allowing (arbitrarily) fancy things to interact with boring things.
 - See e.g. Shan 2002; Giorgolo & Asudeh 2012; Unger 2012; Charlow 2014 for discussions of monads in natural language semantics.

Islands and alternatives

Exceptional scope Standard alternative semantics

Proposal: alternatives take scope

Basic pieces Deriving exceptional scope

Why scope?

Compositionality Selectivity Binding

Horizons

Islands and alternatives

Exceptional scope Standard alternative semantics

Proposal: alternatives take scope

Basic pieces Deriving exceptional scope

Why scope?

Compositionality

Selectivity Binding

Horizons

Compositionality (YMMV)

 The semantics is more compositional than PWFA-based grammars, which rely on syncategorematic rules for (e.g.) closure operations (see e.g. Rooth 1992; Kratzer & Shimoyama 2002):

$$[\![!X]\!]_{\mathsf{PWFA}}^g \coloneqq \{\exists p \in [\![X]\!]^g.p\}$$

- The reason: PWFA-style grammars are simply *built to point-wise compose sets*. If ever you want to do anything else (like quantify over a set), you need a new composition rule.
 - Cf. Simons 2005; Rooth & Dong 2011.

Islands and alternatives

Exceptional scope Standard alternative semantics

Proposal: alternatives take scope

Basic pieces Deriving exceptional scope

Why scope?

Compositionality Selectivity

Binding

Horizons

Selective exceptional scope for indefinites

- Datum: indefinites can take *selective* scope outside islands. E.g., the following allows an any-old-lawyer, one-rich-relative reading:
 - (5) If **(a good lawyer** visits **a relative of mine)**, I'll get a house!
- The reading of interest, truth-conditionally:

 $\exists y. \text{ relative } y \land ((\exists x. \text{ lawyer } x \land \text{ visits } y x) \Rightarrow \text{HOUSE})$

Selective exceptional scope for focus

- A closely related case in the domain of focus interpretation (cf. examples in Rooth 1996; Wold 1996; Beck 2006; Krifka 2006):
 - (6) A: [John only gripes (when MARY leaves lights on)]₃.
 B: No, C₃ ~ [he only gripes (when SUE leaves lights on)].

Selective exceptional scope for *wh*-in-situ

- It's possible for a *wh*-island-bound in-situ *wh* to take matrix scope, even as the other island-bound *wh* takes local scope (Baker 1970):
 - (7) *What do you know (who bought _)?
 - (8) Who knows (who bought what)?A knows who bought X, B knows who bought Y, ...
- Possible even in *wh*-in-situ languages with otherwise robust *wh*-island effects (Dayal 1996; Nishigauchi 1999). E.g., Japanese:
 - (9) Dare-ga (Mary-ga doko-de nani-o katta ka) sitte imasu ka? who-Nom Mary-Nom where-at what-Acc bought ка know be-ноN ка 'Who knows where Mary bought what?'

Selectivity and PWFA

- Repeating the example with multiple indefinites:
 - (5) If **(a good lawyer** visits **a relative of mine)**, I'll get a house!
- Considering examples like these, Rooth concludes:

[Their] theoretical imact is quite dramatic: the recursive definition of alternatives [SC: i.e. PWFA-based semantics] has no advantage over the scoping approach to the logical form of focus. (Rooth 1996)

PWFA doesn't do selective scope-taking, since it only generates flat alternative sets. E.g., for our multiple indefs example:

 $[\![\langle \cdots \rangle]\!]^g_{\mathsf{PWFA}} = \{\mathsf{VISITS}\, y\, x \mid \mathsf{LAWYER}\, x \land \mathsf{RELATIVE}\, y\}$

• Using this set, there's no way to give one indefinite scope over the conditional without bringing the other along for the ride.¹

¹Though you *could* posit an existential closure operator somewhere inside the island in (5), this isn't a general solution.

How about our theory?

- It might seem that we're similarly out of luck.
- Suppose we derived a meaning for a persuasive lawyer visits a relative of mine along these lines:

A-RELATIVE^{*}
$$(\lambda y. \textbf{A-LAWYER}^* (\lambda x. [visits y x]))$$

= $\{visits y x \mid LAWYER x \land RELATIVE y\}$

But LF pied-piping this meaning over the conditional gives both indefinites widest scope!

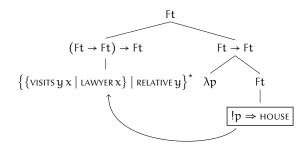
 $\left\{\text{VISITS } y \: x \; \middle| \; \text{LAWYER } x \land \text{Relative } y\right\}^{\star} \left(\lambda p. \: \ldots \: \Rightarrow \: \ldots \: \right)$

Selectivity lurks

• However! An alternative derivation for the island lurks.

A.RELATIVE^{*}
$$\left(\lambda y. \left[\textbf{A.LAWYER}^* \left(\lambda x. \left[\forall ISITS y x \right] \right) \right] \right)$$

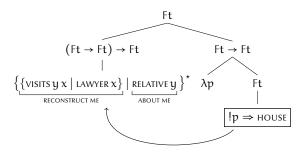
► The key bit is the extra . This gives rise to a *higher-order* alternative set, type FFt (cf. e.g. Dayal 1996, 2002; Fox 2012):


 $\big\{\{\mathsf{VISITS}\, y\, x \mid \mathsf{LAWYER}\, x\} \mid \mathsf{RELATIVE}\, y\big\}$

▶ I.e., if the lawyers are L₁ and L₂, and my relatives are R₁ and R₂:

 $\left\{ \left\{ VISITS R_1 L_1, VISITS R_1 L_2 \right\}, \\ \left\{ VISITS R_2 L_1, VISITS R_2 L_2 \right\} \right\}$

How it works


• LF pied-piping the higher-order alternative set derives the selective exceptional scope reading:

The result is exactly what we're looking for (any-old-lawyer, one-rich-relative):

$$\{(\exists x. \text{Lawyer } x \land \text{Visits } y x) \Rightarrow \text{HOUSE} | \text{Relative } y\}$$

Why it works

- The finely-articulated higher-order alternative set lets us separate the relative-alternatives from the lawyer-alternatives.
- The island, when derived in this way, is "about" relatives in a way it isn't "about" lawyers. ·* spreads this aboutness to the conditional.
- The inner layer of alternatives **semantically reconstructs** (Cresti 1995) i.e., gets sent back down the tree to meet !.

Where we are

Islands and alternatives

Exceptional scope Standard alternative semantics

Proposal: alternatives take scope

Basic pieces Deriving exceptional scope

Why scope?

Compositionality Selectivity Binding

Horizons

Dynamics Concluding

Abstraction

- Binding creates headaches for PWFA (e.g. Shan 2004; Romero & Novel 2013; Charlow 2014; Ciardelli & Roelofsen 2015).
- E.g., Kratzer & Shimoyama 2002's abstraction definition, below, over-generates alternative functions. [[n X]]⁹ is no longer guaranteed to be "about" the same things as [[X]]⁹.

$$\llbracket n X \rrbracket_{\mathsf{PWFA}}^{g} \coloneqq \{ f \mid \forall x. f x \in \llbracket X \rrbracket^{g[n \to x]} \}$$

- Problematic prediction: nobody met a linguist can mean that nobody met every linguist. See Charlow 2014 (§5.5) for details.
- ► Jettisoning PWFA in favor of standard FA (with ⊡ and ·* greasing the skids) gives us access to a standard abstraction operation.

Glass houses, etc.

- Yet it may appear that we have binding issues of our own.
- Ex. (10) has a reading giving the island-bound indefinite widest scope, even as the pronoun on the island is bound by the subject.
 - (10) Every linguist_i is overjoyed whenever (a famous expert on indefinites cites her_i).
- How is this consistent with our theory? Shouldn't scoping the island over the quantifier unbind the pronoun?

Binding reconstruction

- It's true: we can't handle data like this if binding requires LF c-command (as in e.g. Heim & Kratzer 1998). Given the situation with two indefinites on an island, this comes as a surprise.
- What we require is a (minimal) shift in perspective, to a semantics that allows **binding reconstruction** à la Sternefeld 1998, 2001.
- The key is allowing things to denote *functions from assignments* into values (cf. Montague 1974; Bennett 1979; Rooth 1985[!]).
- An example of how this goes for her, mother, Polly, likes:

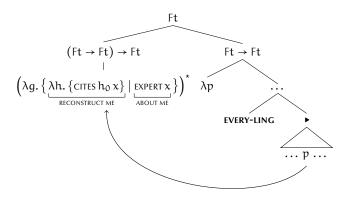
$$\left(\begin{array}{c} \lambda F. \lambda g. LIKES \left(F g[0 \rightarrow P]\right) P \right) \left(\lambda g. g_0'S \text{ MOM}\right) \\ \hline Polly_0 \text{ likes} \\ = \lambda g. LIKES \left(P'S \text{ MOM}\right) F \\ \end{array}\right)$$

Generalized fanciness

- Implementing this perspective simply means tweaking our notion of what a "fancy" meaning is.
- Echoing the theory of binding reconstruction, we'll now take fancy a's to be functions from assignments (type s) into sets of a's.

$$F\mathfrak{a} \coloneqq \mathfrak{s} \to \{\mathfrak{a}\}$$

▶ This in turn implies minimally tweaked versions of ⊡ and ·*:²


$$\boxed{\mathbf{x}} \coloneqq \lambda g. \{\mathbf{x}\} \qquad \qquad \mathbf{m}^{\star} \coloneqq \lambda \kappa. \lambda g. \bigcup_{\mathbf{x} \in \mathbf{m}g} \kappa \mathbf{x} g$$

• Such that (cf. $[A B]_{PWFA}^g = \{fx \mid f \in [A]^g \land x \in [B]^g\}$): $m^* (\lambda f. n^* (\lambda x. fx)) = \lambda g. \{fx \mid f \in m g \land x \in n g\}$

²Still a monad, still decompositions of LIFT!

How this works

The derivation of (10) is entirely parallel to the two-indefinites case. We build a higher-order FFt and reconstruct the inner layer:

 The tree invokes >, a placeholder for your fave way to do binding (e.g. Partee 1973's Derived VP Rule, Büring 2005's β-binding).

Roofing

We shouldn't be able to wide-scope the indefinite in roofing configurations (e.g. Schwarz 2001; Brasoveanu & Farkas 2011):

(11) No candidate_i submitted a paper he_i wrote.

• We make the correct prediction. Here's how we'd go about trying to give this indefinite scope over the subject:

$$\left(\overline{\lambda g. \{y \mid \underbrace{\mathsf{WROTE} \ y \ g_0}_{ABOUT \ ME}}\right)^* \left(\lambda y. \mathsf{NO-CAND} \left(\lambda x. \underbrace{\mathsf{SUBMITTED} \ y \ x}_{ABOUT \ ME}\right)^*\right)$$

The resulting set of propositions are "about" things that g₀ wrote (given an assignment g). Binding fails!

Roofing (cont.)

This improves on choice-functional accounts of exceptional scope (e.g. Reinhart 1997), which can assign roofed indefinites a kind of wide scope (Schwarz 2001; see also Geurts 2000):

$\exists f. \text{ no-candidate} (\lambda x. \text{ submitted} (f \{y \mid \text{wrote } y x\}) x) \\ \approx \text{ no candidate submitted every paper he wrote}$

About which Heim 2011 remarks:

We may have to concede what Fodor and Sag and most subsequent authors wanted to avoid: indefinites are existential quantifiers that enjoy a greater degree of scopal mobility... (Heim 2011: 1022)

• I hope to have shown that we *don't* have to concede this.

Where we are

Islands and alternatives

Exceptional scope Standard alternative semantics

Proposal: alternatives take scope

Basic pieces Deriving exceptional scope

Why scope?

Compositionality Selectivity Binding

Horizons

Dynamics Concluding

Where we are

Islands and alternatives

Exceptional scope Standard alternative semantics

Proposal: alternatives take scope

Basic pieces Deriving exceptional scope

Why scope?

Compositionality Selectivity Binding

Horizons

Dynamics Concluding

Basic data

- A familiar data point: Indefinites behave more like names than quantifiers with respect to anaphoric phenomena.
 - (12) {Polly_{*i*}, a linguist_{*i*}, *every linguist_{*i*}} came in. She_{*i*} sat.

Discourse referents

 Dynamic semantics: sentences add discourse referents to the "conversational scoreboard" (e.g. Groenendijk & Stokhof 1991):

 $g \longrightarrow \llbracket \text{Polly came in} \rrbracket \longrightarrow g + P$

Indefinites (but not quantifiers) also set up discourse referents. In case four linguists came in – A, B, C, and D – we'll have:

$$g \longrightarrow [a \text{ linguist came in}]$$
 $\begin{array}{c} g + A \\ g + B \\ g + C \\ g + D \end{array}$

• Formally captured by modeling meanings as relations on states. For example, here is a candidate meaning for *a linguist came in*:

$$\lambda g.\left\{g+x \; \middle| \; \text{Ling} \; x \land \text{Came} \; x\right\}$$

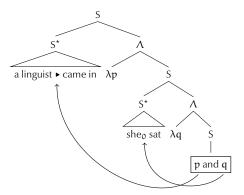
Incorporating dynamics

- Dynamics relies on the ability to output modified assignments (indeed, given indefinites, to output *alternative* assignments).
- One way to think of this is in terms of a new "fancy" type:

$$\mathsf{Fa} \coloneqq \mathsf{s} \to \big\{ \langle \mathsf{a}, \mathsf{s} \rangle \big\}$$

▶ The relevant ⊡ and ·* again essentially follow from the types:³

$$\mathbf{x} \coloneqq \lambda g. \{ \langle \mathbf{x}, g \rangle \} \qquad \qquad \mathbf{m}^* \coloneqq \lambda \kappa. \lambda g. \bigcup_{\substack{\langle \mathbf{x}, \mathbf{h} \rangle \in \mathbf{m}g}} \kappa \mathbf{x} \mathbf{h}$$


Gives the following enriched functional application:

$$\mathfrak{m}^{\star}\left(\lambda f. \mathfrak{n}^{\star}\left(\lambda x. fx\right)\right) = \lambda g. \left\{\langle fx, i\rangle \mid \langle f, h\rangle \in \mathfrak{m} \, g \wedge \langle x, i\rangle \in \mathfrak{n} \, h\right\}$$

³Still a monad, still decompositions of LIFT!

Dynamic binding via LF pied-piping

Remarkably, rejiggering the semantics in this way predicts that dynamic binding *also* arises via a kind of LF pied-piping:

- Unlike standard dynamic approaches, this derivation doesn't require a notion of dynamic conjunction.
 - In keeping with the approach I've been advocating, conjunction is boring and interacts with fancy things via \bigcirc and \cdot^* .

Dynamics and exceptional scope: binding and sloppiness

Proper names can bind pronouns, no matter how embedded:

(13) If e.o. (who hates $Walt_i$) comes, I'll feel bad for him_i If e.o. (who hates $PETE_i$) comes, I won't (feel bad for him_i).

 Predicted: so long as the (island) can scope over the pronoun, the proper name can bind the pronoun. Dynamics and exceptional scope: max discourse anaphora

- Maximal drefs contributed by deeply embedded quantifiers:
 - (14) Everyone heard the rumor that (at most six [senators]_{*i*} [supported Cruz's filibuster]_{*j*}). It turned out to be erroneous: they_{*i*∩*j*} numbered at least ten.
- Suggests even quantifiers take a kind of exceptional scope.
- Predicted if quantifiers introduce maximal drefs, as is standard in modern dynamic semantics (Kamp & Reyle 1993):

At-most-six-senators = $\lambda \kappa$. λg . $\{(|sen \cap X| \le 6, g + X)\}$ where $X = sen \cap \{x \mid \exists (p, h) \in \kappa x g. p\}$

Summing up

Fa	x	m*	[[a linguist]] _{Fe}	[sheo] _{Fe}
a	x	λκ. κ m	N/A	go
$\{a\}$	$\{x\}$	$\lambda \kappa . \bigcup_{x \in m} \kappa x$	$\{x \mid \operatorname{ling} x\}$	$\{g_0\}$
$s \to \{ \mathfrak{a} \}$	$\lambda g.\left\{ x\right\}$	$\lambda \kappa g. \bigcup_{x \in mg} \kappa x g$	$\lambda g. \{x \mid \text{ling } x\}$	$\lambda g. \{g_0\}$
$s \rightarrow \big\{ \big< \mathfrak{a}, s \big> \big\}$	$\lambda g.\left\{ \left\langle x,g\right\rangle \right\}$	$\lambda \kappa g. \bigcup_{\langle x,h \rangle \in mg} \kappa x h$	$\lambda g.\left\{ \left\langle x,g\right\rangle \mid\text{ling}x\right\}$	$\lambda g.\left\{ \left\langle g_{0},g\right\rangle \right\}$

Progressively enriching a grammar with alternatives, alternatives + assignment-sensitivity, and alternatives + assignment modification.

Where we are

Islands and alternatives

Exceptional scope Standard alternative semantics

Proposal: alternatives take scope

Basic pieces Deriving exceptional scope

Why scope?

Compositionality Selectivity Binding

Horizons

Dynamics Concluding

Concluding

- My bottom line: use alternatives, and let them take scope.⁴
- ▶ ⊡ and ·* allow a robust account of alternatives, avoiding many of the pitfalls of PWFA (and other theories of exceptional scope).
- The approach is **really** flexible:
 - Folding in dynamics is a piece of cake.
 - Suggests that dynamic and alternative semantics have all along been palping different parts of the indefiniteness elephant.

⁴The centrality of scope-taking to natural language semantics has likewise been emphasized in work on *continuations* (e.g. Barker & Shan 2014).

Last words

 I focused on English indefinites, but the same strategy allows us to give parallel, empirically robust accounts of focus and in situ wh (and, potentially, of how they *interact*):

> The group of island-escaping operators does not appear to be an arbitrary one.... [Their] semantic similarity, together with the common insensitivity to scope islands, suggest that we should not be satisfied with a theory which treats focus as sui generis. We would like to replace the focus-specific definition with a theory in which focus is one of a family of island-insensitive operators which, roughly, use restricted variables to name families of propositions, open propositions, and/or their existential closures. It is not at all clear to me how this should be done. (Rooth 1996)

I hope to have shed some light on this. Thanks!

References

- Baker, C. L. 1970. Notes on the description of English questions: The role of an abstract question morpheme. *Foundations of Language* 6(2). 197–219.
- Barker, Chris & Chung-chieh Shan. 2014. *Continuations and Natural Language*. Oxford: Oxford University Press.
- Beck, Sigrid. 2006. Intervention effects follow from focus interpretation. *Natural Language Semantics* 14(1). 1–56.
- Bennett, Michael. 1979. Questions in Montague Grammar. Indiana University Linguistics Club.
- Brasoveanu, Adrian & Donka F. Farkas. 2011. How indefinites choose their scope. Linguistics and Philosophy 34(1). 1–55.
- Büring, Daniel. 2005. Binding Theory. New York: Cambridge University Press.
- Charlow, Simon. 2014. On the semantics of exceptional scope: New York University Ph.D. thesis.
- Ciardelli, Ivano & Floris Roelofsen. 2015. Alternatives in Montague Grammar. In Eva Csipak & Hedde Zeijlstra (eds.), *Proceedings of Sinn und Bedeutung 19*, 161–178.
- Cresti, Diana. 1995. Extraction and reconstruction. Natural Language Semantics 3(1). 79-122.
- Dayal, Veneeta. 1996. Locality in wh quantification. Dordrecht: Springer Science+Business Media.
- Dayal, Veneeta. 2002. Single-pair versus multiple-pair answers: Wh-in-situ and scope. *Linguistic Inquiry* 33(3). 512–520.
- Fox, Danny. 2012. Lectures on the semantics of questions. Unpublished lecture notes.
- Geurts, Bart. 2000. Indefinites and choice functions. Linguistic Inquiry 31(4). 731-738.

- Giorgolo, Gianluca & Ash Asudeh. 2012. **M**, η, *: Monads for conventional implicatures. In Ana Aguilar Guevara, Anna Chernilovskaya & Rick Nouwen (eds.), *Proceedings of Sinn und Bedeutung 16*, 265–278. MIT Working Papers in Linguistics.
- Groenendijk, Jeroen & Martin Stokhof. 1991. Dynamic predicate logic. *Linguistics and Philosophy* 14(1). 39–100.
- Hamblin, C. L. 1973. Questions in Montague English. Foundations of Language 10(1). 41-53.
- Heim, Irene. 2000. Notes on interrogative semantics. Unpublished lecture notes.
- Heim, Irene. 2011. Definiteness and indefiniteness. In Klaus von Heusinger, Claudia Maienborn & Paul Portner (eds.), *Semantics: An International Handbook of Natural Language Meaning*, vol. 33 (HSK 2), chap. 41, 996–1025. Berlin: de Gruyter.
- Heim, Irene & Angelika Kratzer. 1998. Semantics in generative grammar. Oxford: Blackwell.
- Kamp, Hans & Uwe Reyle. 1993. From Discourse to Logic. Dordrecht: Kluwer Academic Publishers.
- Karttunen, Lauri. 1977. Syntax and semantics of questions. Linguistics and Philosophy 1(1). 3-44.
- Kratzer, Angelika & Junko Shimoyama. 2002. Indeterminate pronouns: The view from Japanese. In Yukio Otsu (ed.), *Proceedings of the Third Tokyo Conference on Psycholinguistics*, 1–25. Tokyo: Hituzi Syobo.
- Krifka, Manfred. 2006. Association with focus phrases. In Valéria Molnár & Susanne Winkler (eds.), *The Architecture of Focus*, 105–136. Mouton de Gruyter.
- Moggi, Eugenio. 1989. Computational lambda-calculus and monads. In *Proceedings of the Fourth Annual Symposium on Logic in computer science*, 14–23. Piscataway, NJ, USA: IEEE Press.

- Montague, Richard. 1974. Universal Grammar. In Richmond Thomason (ed.), *Formal Philosophy*, chap. 7, 222–246. New Haven: Yale University Press.
- Nishigauchi, Taisuke. 1990. *Quantification in the theory of grammar*. Dordrecht: Kluwer Academic Publishers.
- Nishigauchi, Taisuke. 1999. Quantification and *wh*-constructions. In Natsuko Tsujimura (ed.), *The Handbook of Japanese Linguistics*, chap. 9, 269–296. Blackwell.
- Partee, Barbara H. 1973. Some transformational extensions of Montague grammar. *Journal of Philosophical Logic* 2(4). 509–534.
- Partee, Barbara H. 1986. Noun phrase interpretation and type-shifting principles. In Jeroen Groenendijk, Dick de Jongh & Martin Stokhof (eds.), *Studies in Discourse Representation Theory and the Theory of Generalized Quantifiers*, 115–143. Dordrecht: Foris.
- Reinhart, Tanya. 1997. Quantifier scope: How labor is divided between QR and choice functions. *Linguistics and Philosophy* 20(4). 335–397.
- Romero, Maribel & Marc Novel. 2013. Variable binding and sets of alternatives. In Anamaria Fălăuș (ed.), *Alternatives in Semantics*, chap. 7, 174–208. Houndsmills, Basingstoke, Hampshire: Palgrave Macmillan.
- Rooth, Mats. 1985. Association with focus: University of Massachusetts, Amherst Ph.D. thesis.
- Rooth, Mats. 1992. A theory of focus interpretation. Natural Language Semantics 1(1). 75-116.
- Rooth, Mats. 1996. Focus. In Shalom Lappin (ed.), *The Handbook of Contemporary Semantic Theory*, 271–298. Oxford: Blackwell.

- Rooth, Mats & Hongyuan Dong. 2011. A recursive phonology interface for WH-F alternative semantics. Poster presented at Semantics and Linguistic Theory 21.
- Schwarz, Bernhard. 2001. Two kinds of long-distance indefinites. In Robert van Rooy & Martin Stokhof (eds.), *Proceedings of the Thirteenth Amsterdam Colloquium*, 192–197. University of Amsterdam.
- Shan, Chung-chieh. 2002. Monads for natural language semantics. In Kristina Striegnitz (ed.), *Proceedings of the ESSLI 2001 Student Session*, 285–298.
- Shan, Chung-chieh. 2004. Binding alongside Hamblin alternatives calls for variable-free semantics. In Kazuha Watanabe & Robert B. Young (eds.), *Proceedings of Semantics and Linguistic Theory 14*, 289–304. Ithaca, NY: Cornell University.
- Simons, Mandy. 2005. Dividing things up: The semantics of *or* and the modal/*or* interaction. *Natural Language Semantics* 13(3). 271–316.
- von Stechow, Arnim. 1996. Against LF pied-piping. Natural Language Semantics 4(1). 57-110.
- Sternefeld, Wolfgang. 1998. The semantics of reconstruction and connectivity. Arbeitspapier 97, SFB 340. Universität Tübingen and Universität Stuttgart, Germany.
- Sternefeld, Wolfgang. 2001. Semantic vs. Syntactic Reconstruction. In Christian Rohrer, Antje Roßdeutscher & Hans Kamp (eds.), *Linguistic Form and its Computation*, 145–182. Stanford: CSLI Publications.
- Unger, Christina. 2012. Dynamic semantics as monadic computation. In Manabu Okumura, Daisuke Bekki & Ken Satoh (eds.), *New Frontiers in Artificial Intelligence JSAI-isAI 2011*, vol. 7258 Lecture Notes in Artificial Intelligence, 68–81. Springer Berlin Heidelberg.

- Wadler, Philip. 1992. Comprehending monads. In *Mathematical Structures in Computer Science*, vol. 2 (special issue of selected papers from 6th Conference on Lisp and Functional Programming), 461–493.
- Wadler, Philip. 1995. Monads for functional programming. In Johan Jeuring & Erik Meijer (eds.), Advanced Functional Programming, vol. 925 Lecture Notes in Computer Science, 24–52. Springer Berlin Heidelberg.
- Wold, Dag E. 1996. Long distance selective binding: The case of focus. In Teresa Galloway & Justin Spence (eds.), *Proceedings of Semantics and Linguistic Theory 6*, 311–328. Ithaca, NY: Cornell University.