
## Homework for Tuesday September 23, 2014

## 1 Type theory and lambdas

- What are the types of the following expressions?
  - 1. devour
  - $2. \ {\rm fond}$
  - 3. part of New Brunswick
  - 4. show Porky
  - $5. \ {\rm white \ cat} \ {\rm from} \ {\rm Providence}$
- Evaluate the following claims.
  - $\triangleright$  If the expressions are equal, show how to derive the latter from the former by applications of  $\alpha$ -,  $\beta$ -, or  $\eta$  equivalence.
  - $\triangleright$  If not, say why not.
  - 1.  $(\lambda x.\lambda y.licks'(x)(y))(u)(p) = licks'(u)(p)$
  - 2.  $(\lambda x.f(x)(y))(y) = f(y)(y)$
  - 3.  $(\lambda x.\lambda y.f(x)(y))(y) = \lambda z.f(y)(z)$
  - 4.  $\lambda x.kiss'(x) = \lambda y.\lambda x.kiss'(y)(x)$
  - 5.  $\lambda x.kiss'(x) = \lambda x.\lambda y.kiss'(y)(x)$
- Simplify the following expressions as much as possible.
  - $\triangleright$  Show (and justify) each step in your calculation (you might have to do more than one  $\beta$ -reduction!).
  - $\vartriangleright\,$  Exploit  $\alpha\text{-equivalences}$  as needed to avoid variable capture.
  - $\,\vartriangleright\,$  Be careful. Some of these are tricky.
  - 1.  $(\lambda x.kiss'(x)(y))(y)$
  - 2.  $(\lambda P.\lambda x.P(x))(run')$
  - 3.  $(\lambda R.R(a)(b))(\lambda y.\lambda x.kiss'(y)(x))$
  - 4.  $(\lambda f.f(x))(\lambda y.\lambda x.g(x)(y))$
  - 5.  $(\lambda \mathcal{P}.\mathcal{P}(\lambda p.p))(\lambda k.k(meows'(x)))$
- Any function f has a type that we can write as (σ, τ) (for some type σ and some type τ). Can a function ever apply to itself? Why or why not?

## 2 Composition inside DP

- Calculate [[Uni is a big white cat from Providence]], labeling each node in the tree with its type and denotation (as in the Sept 19 handout).
  - ▷ Assume the available combination operations are Functional Application (FA) and Predicate Modification (PM).
  - ▷ Assume whatever semantics you like for is and a (so long as it works!).
  - $\triangleright$  Indicate which composition operation (**FA** or **PM**) you used to interpret each binary-branching node.
- Give *another* derivation, this time with a different syntactic structure (there are a few possible parses). Did you get the same result as before?
- Now, suppose that you only have **FA** in your toolbox.
  - ▷ Devise a silent morpheme mod<sub>∅</sub> which allows you to give a meaning for [[Uni is a big white cat from Providence]] anyway.
  - $\triangleright$  Show the derivation (again labeling each node).
  - $\,\triangleright\,$  Did you get the same result as before?
- Both the grammar with **FA** and **PM** and the grammar with **FA** and  $mod_{\emptyset}$  can glue this sentence together in a way you might not have expected. For example, the tree below is interpretable using **FA** and **PM**.



- ▷ Assign an interpretation to the tree (using any set of assumptions, so long as it's clear what they are). Give a type and meaning to each numbered node.
- $\triangleright$  Does the interpretation differ from the previous examples?
- $\triangleright\,$  Do you find this structure plausible?