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1 Vocabulary and syntax

Vocabulary (i.e. building blocks):

• Infinite alphabet of propositional variables: p,q, r, . . .
• A ‘hook’ symbol, ¬, corresponding to it’s false that.

• A ‘wedge’ symbol, ∧, corresponding to and.

• A ‘vee’ symbol, ∨, corresponding to inclusive or

• A right-facing arrow,⇒, corresponding to (a particular construal of) if …then …

• Left and right parentheses, for punctuation: ( )

Syntax: the set of well-formed formulas (‘ ’) of propositional logic is defined as follows:

• For any propositional variable v, v ∈ . These are the atomic propositions.

• If φ ∈ , then ¬φ ∈ . These are the negations.

• If φ ∈ and ψ ∈ , then (φ ∧ ψ) ∈ . These are the conjunctions.

• If φ ∈ and ψ ∈ , then (φ ∨ ψ) ∈ . These are the disjunctions.

• If φ ∈ and ψ ∈ , then (φ⇒ ψ) ∈ . These are the (material) conditionals.

• Nothing else is in . (Can you figure out why this condition is necessary?)

For example, the formulas on the left are in (why?). Those on the right are not (why not?):

¬(p ∧ q) p ∧ q ∨ r
(¬p ∧ q) (p ∧

(p⇒ ¬(q ∨ r)) (p⇒ ¬)

Unlike English, the formulas of propositional logic are unambiguous. E.g. (recalling our previous case
eggs and ham or bacon), p ∧ q ∨ r ∉ , though (p ∧ (q ∨ r)) ∈ and ((p ∧ q) ∨ r) ∈ .1

It’s common practice to omit the outermost parentheses from formulas, since doing so never creates
ambiguity. I will follow that practice here.

1We could write the predicate logic grammar as a context-free phrase structure grammar, if we wished. And we could also
represent proofs of syntactic well-formedness as trees, just like in linguistic syntax.
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2 Semantics of propositional logic

Any φ ∈ has a semantic value relative to an assignment of values to the propositional variables,
sometimes also known as a valuation or possible world. We’ll write this ⟦φ⟧w.
Formally,w is some (total) function from propositional variables into truth values. Here is one possible
value for w, presented extensionally using the tabular notation:2

w ∶=

⎡⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎣

⋮
p → 1
q → 0
r → 0
s → 1

⋮

⎤⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎦

For atomic formulas, we have the following rule for interpretation:

⟦p⟧w ∶= w(p)

Given the value for w we just defined in the table, ⟦p⟧w = w(p) = 1, ⟦q⟧w = w(q) = 0, etc.

The rules for interpreting complex formulas are given recursively as follows (that is, each φ or ψ could
itself be an arbitrarily syntactically complex formula):

• ⟦¬φ⟧w ∶= 1 − ⟦φ⟧w

• ⟦φ ∧ ψ⟧w ∶= Min(⟦φ⟧w, ⟦ψ⟧w)
• ⟦φ ∨ ψ⟧w ∶= Max(⟦φ⟧w, ⟦ψ⟧w)
• ⟦φ⇒ ψ⟧w ∶= Max(⟦¬φ⟧w, ⟦ψ⟧w)

Besides the notion of arithmetic subtraction in the clause for negation, the definitions refer to Min and
Max. These are just functions from ordered pairs of two truth values to a third truth value, as follows:

⎡⎢⎢⎢⎢⎢⎢⎢⎣

(1, 1) → 1
(1, 0) → 0
(0, 1) → 0
(0, 0) → 0

⎤⎥⎥⎥⎥⎥⎥⎥⎦

⎡⎢⎢⎢⎢⎢⎢⎢⎣

(1, 1) → 1
(1, 0) → 1
(0, 1) → 1
(0, 0) → 0

⎤⎥⎥⎥⎥⎥⎥⎥⎦
Min Max

In other words, Min takes a pair of two numbers and returns the larger of the two, while Max returns the
smaller of the two. Another way of putting this: Min returns 1 only when both numbers are 1, and Max
returns 1 whenever at least one of the numbers is 1.

You should find that this matches the intuitive meanings of ∧ and ∨ quite closely. This trick is made
possible by treating the range ofw as numerical. Other equivalent options are, of course, available (see
e.g. the treatment here).

2Notice that w’s can be regarded as characteristic functions! In other words, we can think of possible worlds as sets of the
formulas they regard as true!
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E.g., suppose w(p) = 1, w(q) = 1, and w(r) = 0. We calculate ⟦(p ∨ ¬q) ∧ r⟧w like so:

⟦(p ∨ ¬q) ∧ r⟧w = Min(⟦p ∨ ¬q⟧w, ⟦r⟧w) (Semantic clause for ∧)
= Min(Max(⟦p⟧w, ⟦¬q⟧w), ⟦r⟧w) (Semantic clause for ∨)
= Min(Max(⟦p⟧w, 1 − ⟦q⟧w), ⟦r⟧w) (Semantic clause for ¬)
= Min(Max(w(p), 1 −w(q)),w(r)) (Semantic clause for atomic formulas)
= Min(Max(1, 1 − 1), 0) (By assumption)
= Min(Max(1, 0), 0) (Arithmetic)
= Min(1, 0) (By Max)
= 0 (By Min)

Exercise: find values for w(p), w(q), and w(r) that yield 1 as a result for ⟦(p ∨ ¬q) ∧ r⟧w.

3 Abstracting away from the world

3.1 Truth tables

It is sensible and coherent to talk about the semantic value of any relative to a specific worldw. But
sometimes we need to take a broader view.

For example, suppose I ask whether p and p∧(p∨q) are semantically equivalent in propositional logic.
That’s a question about whether for every possible world w, ⟦p⟧w = ⟦p ∧ (p ∨ q)⟧w:

φ and ψ are equivalent (‘p ≡ q’) iff for every w, ⟦φ⟧w = ⟦ψ⟧w

How do we evaluate whether two formulas are equivalent? Given that there’s an infinite number of
propositional variables, there’s likewise an infinite number of possible worlds! Fortunately, we don’t
need to consider each possible world individually in order to determine equivalence. Instead, we can
construct a truth table.

For example, suppose we’re trying to figure out whether p and p ∧ (p ∨ q) are equivalent. The way to
check this is to see whether there any way to assign values to p and q that delivers different values for p
and p ∧ (p ∨ q). We check this with the following truth table:

p q p ∧ (p ∨ q)
1 1 1
0 1 0
1 0 1
0 0 0

The p column and the p ∧ (p ∨ q) column are the same! In other words, for any of the four ways of
assigning values to p and q, p and p∧ (p∨q) have the same value.3 Ergo, for any possible world what-
soever, the two formulas have the same value. Ergo, p ≡ p ∧ (p ∨ q).

Notice that φ ≡ ψ iff for any possible world w, ⟦(φ ⇒ ψ) ∧ (ψ ⇒ φ)⟧w = 1. More generally, when
⟦φ⟧w = 1 for any possible choice of w, we say that φ is a tautology.4

3In other words, we’re now considering equivalence classes of possible worlds.
4Yes, I now realize this is Greek and not Latin…
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The semantics for our connectives can also be characterized in terms of truth tables:

φ ¬φ
1 0
0 1

φ ψ φ ∧ ψ φ ∨ ψ φ⇒ ψ
1 1 1 1 1
0 1 0 1 1
1 0 0 1 0
0 0 0 0 1

Truth tables generalize to arbitrarily complex formulas:

φ ψ χ . . .

1 1 1 . . .
0 1 1 . . .
1 0 1 . . .
0 0 1 . . .
1 1 0 . . .
0 1 0 . . .
1 0 0 . . .
0 0 0 . . .

Some famous propositional logical equivalences (Exercise: prove these using truth tables!!):

• Double-negation elimination:

⊳ ¬¬p ≡ p
• Distributive laws:

⊳ p ∧ (q ∨ r) ≡ (p ∧ q) ∨ (p ∧ r)
⊳ p ∨ (q ∧ r) ≡ (p ∨ q) ∧ (p ∨ r)

• DeMorgan’s laws:

⊳ ¬(p ∧ q) ≡ ¬p ∨ ¬q
⊳ ¬(p ∨ q) ≡ ¬p ∧ ¬q

• Interdefinability ofwedge and vee (follows fromDeMorgan’s and double-negation elimination):

⊳ p ∧ q ≡ ¬(¬p ∨ ¬q)
⊳ p ∨ q ≡ ¬(¬p ∧ ¬q)

• Eliminability of the material conditional:

⊳ p⇒ q ≡ ¬(p ∧ ¬q) ≡ ¬p ∨ q
Though we’ve defined three binary connectives (∧,∨,⇒), any one of these plus negation is enough to
capture the functionality of the other two. In a sense, the other two needn’t be separately defined (and
in practice, they frequently aren’t):

any member of {(C,¬) ∶ C ∈ {∧,∨,⇒}} is functionally complete

So, we could make do with just ∧ and ¬, with just ∨ and ¬, or with just⇒ and ¬.5

5It turns out we can actually get by with just a single, binary connective, written ‘↑’ and known as the Sheffer stroke. It has
the following semantics (in prose: ‘φ ↑ ψ’ means ‘not both φ and ψ’):

⟦φ ↑ ψ⟧w ∶= 1 − Min(⟦φ⟧w, ⟦ψ⟧w)
For example, ¬p ≡ p ↑ p, p ∧ q ≡ (p ↑ q) ↑ (p ↑ q), and so on.
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3.2 Meanings as sets of possible worlds

Here’s another way to abstract away from particular possible worlds. We can consider the semantic val-
ues of propositional logic formulas simpliciter.

The way we do this is by identifying ⟦φ⟧with the set of possible worlds that satisfyφ— in other words,
the worlds where φ is true. This is just a different perspective on the semantics developed earlier:

w ∈ ⟦φ⟧ iff ⟦φ⟧w = 1

We start by giving a meaning for atomic formulas (note the absence of the superscript here):6

⟦p⟧ ∶= {w ∶ w(p) = 1}

…And then, we give meanings to complex formulas, in terms of set-theoretic operations:

• ⟦¬φ⟧ ∶= ⟦φ⟧
• ⟦φ ∧ ψ⟧ ∶= ⟦φ⟧ ∩ ⟦ψ⟧
• ⟦φ ∨ ψ⟧ ∶= ⟦φ⟧ ∪ ⟦ψ⟧
• ⟦φ⇒ ψ⟧ ∶= ⟦¬φ⟧ ∪ ⟦ψ⟧

From our experience with set theory, we know, e.g., thatw ∈ ⟦φ∧ψ⟧ iffw ∈ φ andw ∈ ψ— i.e., iff both
φ and ψ are true at w. This matches up precisely with our earlier semantics for conjunction, which also
requires φ and ψ to both be true for φ ∧ ψ to be true. Mutatis mutandis for the other connectives:

φ ¬φ
1 0
0 1

φ ψ φ ∧ ψ φ ∨ ψ φ⇒ ψ
1 1 1 1 1
0 1 0 1 1
1 0 0 1 0
0 0 0 0 1

Because every propositional equivalence holds in the set-theoretic version of the semantics, all of the
previous equivalences turn out to have set-theoretic analogs. For example:

• A = A
• A ∩ (B ∪C) = (A ∩ B) ∪ (A ∩C)
• A ∩ B = A ∪ B
• …

Next class:

• We will see how to make this semantics more compositional by assigning meanings to the con-
nectives proper. That is, we will be able to talk about ⟦¬⟧, ⟦∧⟧, ⟦∨⟧, and ⟦⇒⟧, rather than needing
to talk about the semantics of formulas containing them.

• This will likewise allow us to move away from the flatter syntax relied on today into one more
closely resembling (going analyses of) natural language.

6In terms of characteristic functions, ⟦p⟧ ∶= {w ∶ p ∈ w}.
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