
A modular theory of pronouns (and binding)

Simon Charlow (Rutgers)

Dubrovnik September 4, 2017

1

Overview

Today: a brief on the power of abstraction and modularity in semantic theorizing,

with a focus on pronouns and the grammatical mechanisms for dealing with them.

Semanticists tend to respond to things beyond the Fregean pale by lexically and

compositionally generalizing to the worst case. One-size-fits-all.

Functional programmers instead look for repeated patterns, and abstract those out

as separate, modular pieces (functions). When we do semantics, this strategy has

conceptual and especially empirical virtues.

2

The standard theory, and its discontents

3

A baseline extensional semantic theory

Inductively define the space of possible meanings, sorted by type:

τ ::= e | t | τ → τ︸ ︷︷ ︸
e→t, (e→t)→t, ...

Interpret binary combination via (type-driven) functional application:

�α β� := �α��β� or �β��α�, whichever is defined

4

A sample derivation

sawmj

t

j

e

John

sawm

e→ t

saw

e→ e→ t

saw

m

e

Mary

5

Pronouns and binding

This picture is awesome. But a lot of important stuff doesn’t fit neatly in it.

There are tons of examples, but the one I’d like to focus on today is the case of

pronouns — how are they valued, and what ramifications does the need to value

them have for the rest of the grammar?

1. John saw heri .

2. Every philosopheri thinks theyi ’re a genius.

6

Standardly: extending the baseline theory with assignments

Extend the baseline extensional theory such that the compositionally relevant

meanings are uniformly dependent on assignments:

τ◦ ::= e | t | τ◦ → τ◦ τ ::= g→ τ◦︸ ︷︷ ︸
g→e→t, g→(e→t)→t, ...

Interpret binary combination via assignment-sensitive functional application:

��α β�� := λg.��α��g(��β��g) or λg.��β��g(��α��g), whichever is defined

7

Sample derivation

λg.sawg0 j

g→ t

λg. j

g→ e

John

λg.sawg0

g→ e→ t

λg.saw

g→ e→ e→ t

saw

λg.g0

g→ e

her0

When all is said and done, apply the derived meaning to a contextual furnished

assignment to derive a proposition (truth value).

8

Some worries

The standard theory is, by and large, incredibly successful.

Nevertheless, there are a couple conceptual issues:

ñ Every meaning is specified relative to an assignment? Really?

ñ Binding requires us to gerrymander ��·�� via syncategorematic rules.

Along with (probably more importantly) a couple empirical issues:

ñ “Paycheck pronouns” are unaccounted for.

ñ As is binding reconstruction.

9

Complicating the lexicon: Nonprominals

λg.sawg0 j

g→ t

λg. j

g→ e

John

λg.sawg0

g→ e→ t

λg.saw

g→ e→ e→ t

saw

λg.g0

g→ e

her0

10

Abstraction goals

λg. leftb

g→ t

λg.b

g→ e

Bill

λg.λx. leftx

g→ e→ t

Λ0 λg. leftg0

g→ t

...
...

...

t0 left

subj. raising

λg.eo(λx. likes(momx)x)

g→ t

λg.eo

g→ (e→ t)→ t

everyone

λg.λx. likes(momx)x

g→ e→ t

Λ0 λg. likes(momg0)g0

g→ t

...
...

...

t0 likes their0 mom

subj. raising

11

Complicating the grammar: Abstraction

λg.f (leftg0)

g→ e→ t

f

g→ t→ e→ t

Λ0

λg. leftg0

g→ t

t0 left

No f works in the general case...

The grammar wants to interpret both branches at the same assignment, but the

right node must be interpreted at a shifted assignment:

�Λi α�︸ ︷︷ ︸
extending �·� with a syncategorematic rule

:= λg.λx.�α�g i→x

12

Complicating the grammar: Abstraction

λg.f (leftg0)

g→ e→ t

f

g→ t→ e→ t

Λ0

λg. leftg0

g→ t

t0 left

No f works in the general case...

The grammar wants to interpret both branches at the same assignment, but the

right node must be interpreted at a shifted assignment:

�Λi α�︸ ︷︷ ︸
extending �·� with a syncategorematic rule

:= λg.λx.�α�g i→x

12

Complicating the grammar: Abstraction

λg.f (leftg0)

g→ e→ t

f

g→ t→ e→ t

Λ0

λg. leftg0

g→ t

t0 left

No f works in the general case...

The grammar wants to interpret both branches at the same assignment, but the

right node must be interpreted at a shifted assignment:

�Λi α�︸ ︷︷ ︸
extending �·� with a syncategorematic rule

:= λg.λx.�α�g i→x

12

Under-generation: (binding) reconstruction

It is well known that (quantificational) binding does not require surface c-command

(e.g., Sternefeld 1998, 2001, Barker 2012):

1. Which of theiri relatives does everyonei like ?

2. Hisi mom, every boyi likes .

3. Their advisori seems to every Ph.D. studenti to be a genius.

4. Unless hei ’s been a bandit, no mani can be an officer .

But Predicate Abstraction passes modified assignments down the tree, and so

binding invariably requires (LF) c-command. Scoping the quantifier over the

pronoun restores LF c-command, but should trigger a Weak Crossover violation:

5. *Whoi does hisi mother like ?

6. *Hisi superior reprimanded no officeri .

13

Under-generation: (binding) reconstruction

It is well known that (quantificational) binding does not require surface c-command

(e.g., Sternefeld 1998, 2001, Barker 2012):

1. Which of theiri relatives does everyonei like ?

2. Hisi mom, every boyi likes .

3. Their advisori seems to every Ph.D. studenti to be a genius.

4. Unless hei ’s been a bandit, no mani can be an officer .

But Predicate Abstraction passes modified assignments down the tree, and so

binding invariably requires (LF) c-command. Scoping the quantifier over the

pronoun restores LF c-command, but should trigger a Weak Crossover violation:

5. *Whoi does hisi mother like ?

6. *Hisi superior reprimanded no officeri .

13

Under-generation: Paycheck pronouns

Simple pronouns anaphoric to expressions containing pronouns can receive “sloppy”

readings (e.g., Cooper 1979, Engdahl 1986, Jacobson 2000):

1. Johni deposited [hisi paycheck]j , but Billk spent itj .

2. Every semanticisti deposited [theiri paycheck]j . Every philosopher spent itj .

These are unaccounted for on the standard picture. There are two (related) issues:

ñ What’s the denotation of the paycheck pronoun? Can’t be a simple individual.

ñ The paycheck pronoun’s meaning is different from the thing it’s anaphoric to.

14

Under-generation: Paycheck pronouns

Simple pronouns anaphoric to expressions containing pronouns can receive “sloppy”

readings (e.g., Cooper 1979, Engdahl 1986, Jacobson 2000):

1. Johni deposited [hisi paycheck]j , but Billk spent itj .

2. Every semanticisti deposited [theiri paycheck]j . Every philosopher spent itj .

These are unaccounted for on the standard picture. There are two (related) issues:

ñ What’s the denotation of the paycheck pronoun? Can’t be a simple individual.

ñ The paycheck pronoun’s meaning is different from the thing it’s anaphoric to.

14

Roadmap

The theoretical baggage associated with the standard account is straightforward

and cheap to dispense with, via something called an applicative functor.

The empirical baggage seems to require an additional piece for dealing with

higher-order meanings. This upgrades the applicative functor into a monad.

15

Getting modular

16

Abstraction and modularity

Functional programmers are lazy. When they see a bit of code occurring over and

over again in their program, they abstract it out as a separate function.

Let’s see how far this gets us.

17

For assignment-dependence

The idea — almost embarrassing in its simplicity — is to just abstract out and

modularize the core features of the standard account.

In lieu of treating everything as trivially dependent on an assignment, invoke a

function ρ which turns any x into a constant function from assignments into x:

ρ := λx.λg.x︸ ︷︷ ︸
a→g→a

Instead of taking on ��·�� wholesale, we’ll help ourselves to a function ç which

allows us to perform assignment-friendly function application on demand:

ç := λm.λn.λg.mg(ng)︸ ︷︷ ︸
(g→a→b)→(g→a)→g→b

18

For assignment-dependence

The idea — almost embarrassing in its simplicity — is to just abstract out and

modularize the core features of the standard account.

In lieu of treating everything as trivially dependent on an assignment, invoke a

function ρ which turns any x into a constant function from assignments into x:

ρ := λx.λg.x︸ ︷︷ ︸
a→g→a

Instead of taking on ��·�� wholesale, we’ll help ourselves to a function ç which

allows us to perform assignment-friendly function application on demand:

ç := λm.λn.λg.mg(ng)︸ ︷︷ ︸
(g→a→b)→(g→a)→g→b

18

For assignment-dependence

The idea — almost embarrassing in its simplicity — is to just abstract out and

modularize the core features of the standard account.

In lieu of treating everything as trivially dependent on an assignment, invoke a

function ρ which turns any x into a constant function from assignments into x:

ρ := λx.λg.x︸ ︷︷ ︸
a→g→a

Instead of taking on ��·�� wholesale, we’ll help ourselves to a function ç which

allows us to perform assignment-friendly function application on demand:

ç := λm.λn.λg.mg(ng)︸ ︷︷ ︸
(g→a→b)→(g→a)→g→b

18

Sample derivations

λg. leftg0

g→ t

λg.g0

g→ e

she0

λn.λg. left(ng)

(g→ e)→ g→ t

λg. left

g→ e→ t

left

e→ t

left

ç

ρ

λg.sawg0 j

g→ t

λg. j

g→ e

j

e

John

λn.λg.sawg0 (ng)

(g→ e)→ g→ t

λg.sawg0

g→ e→ t

λn.λg.saw(ng)

(g→ e)→ g→ e→ t

λg.saw

g→ e→ e→ t

saw

e→ e→ t

saw

λg.g0

g→ e

her0

ρ ç

ç

ρ

19

Sample derivations

λg. leftg0

g→ t

λg.g0

g→ e

she0

λn.λg. left(ng)

(g→ e)→ g→ t

λg. left

g→ e→ t

left

e→ t

left

ç

ρ

λg.sawg0 j

g→ t

λg. j

g→ e

j

e

John

λn.λg.sawg0 (ng)

(g→ e)→ g→ t

λg.sawg0

g→ e→ t

λn.λg.saw(ng)

(g→ e)→ g→ e→ t

λg.saw

g→ e→ e→ t

saw

e→ e→ t

saw

λg.g0

g→ e

her0

ρ ç

ç

ρ

19

Basically

It looks like you’re trying to do semantics.

Would you like help?

� Give me a ρ

� Give me a ç
� Don’t show me this tip again

20

Basically

It looks like you’re trying to do semantics.

Would you like help?

� Give me a ρ

� Give me a ç
� Don’t show me this tip again

20

Basically

It looks like you’re trying to do semantics.

Would you like help?

� Give me a ρ

� Give me a ç
� Don’t show me this tip again

20

Basically

It looks like you’re trying to do semantics.

Would you like help?

� Give me a ρ

� Give me a ç

� Don’t show me this tip again

20

Basically

It looks like you’re trying to do semantics.

Would you like help?

� Give me a ρ

� Give me a ç
� Don’t show me this tip again

20

Basically

It looks like you’re trying to do semantics.

Would you like help?

� Give me a ρ

�✓ Give me a ç
� Don’t show me this tip again

20

Conceptual issues dissolved

First, ρ allows stuff that’s not really assignment-dependent to be lexically so.

Second, because the grammar doesn’t insist on composing meanings with ��·��,
abstraction can be defined directly (e.g., Sternefeld 1998, 2001, Kobele 2010):

Λi := λf .λg.λx.f g i→x︸ ︷︷ ︸
(g→a)→g→b→a

21

Λi := λf .λg.λx.f g i→x

λg. leftb

g→ t

λg.b

g→ e

b

e

Bill

λn.λg. left(ng)

(g→ e)→ g→ t

λg.λx. leftx

g→ e→ t

λg. leftg0

g→ t

...
...

...

t0 left

ρ ç

Λ0

subj. raising

22

A familiar construct

When we abstract out ρ and ç in this way, we’re in the presence of something

known to computer scientists and functional programmers as an applicative

functor (McBride & Paterson 2008, Kiselyov 2015).

You might also recognize ρ and ç as the K and S combinators from Combinatory

Logic (Curry & Feys 1958).

23

Applicative functors

An applicative functor is a type constructor F with two functions:

ρ :: a → F a ç :: F (a → b)→ F a → F b

Satisfying a few laws:

Homomorphism Identity

ρ f ç ρx = ρ(f x) ρ(λx.x)ç v = v

Interchange Composition

ρ(λf .f x)ç u = uç ρx ρ(◦)ç uç v çw = uç (v çw)

Basically, these laws say that ç should be a kind of fancy functional application, and

ρ should be a trivial way to make something fancy.

24

Generality

Another example of an applicative functor, for sets:

ρx := {x} mç n := {f x | f ∈m, x ∈ n
}

(See Charlow 2014, 2017 for more on this.)

The technique is super general, and can be fruitfully applied (inter alia) to dynamics,

presupposition, supplementation, (association with) focus, and scope:

ρx := λk.kx mç n := λk.m(λf .n(λx.k (f x)))

(See Shan & Barker 2006, Barker & Shan 2008 for more on this.)

25

Applicative functors compose

F (F a)

F a

a

ρ

ρ

F (F b)

F (F a)→ F (F b)

F (F a → F b)

F (F (a → b)) F (F (a → b))→ F (F a → F b)

F (F (a → b)→ F a → F b)

ç
F (a → b)→ F a → F b

F (F a)

ç

ç

ρ

Whenever you have two applicative functors, you’re guaranteed to have two more!

26

Getting higher-order

27

What we have

The applicative-functor approach to assignment sensitivity immediately dissolves

the theoretical baggage associated with the standard account:

ñ ρ allows us to keep the lexicon maximally simple.

ñ ç liberates us from ��·��, allowing a categorematic treatment of abstraction.

All in all, this seems like a nice grammatical interface for pronouns and binding.

Extra resources are invoked only when they’re required for composition.

28

What we don’t have

However, it seems ρ and ç are no help for reconstruction or paychecks (time

permitting, I’ll question this point at the end, but let’s run with it for now).

Intuitively, both phenomena are higher-order: the referent anaphorically retrieved

by the paycheck pronoun or the topicalized expression’s trace is an ‘intension’,

rather than an ‘extension’ (cf. Sternefeld 1998, 2001, Hardt 1999, Kennedy 2014).

1. Johni deposited [hisi paycheck]j , but Billk spent itj .

2. [Hisi mom]j , every boyi likes tj .

29

Anaphora to intensions

What would it mean for a pronoun (or trace) to be anaphoric to an intension?

Perhaps: the value returned at an assignment (the anaphorically retrieved meaning)

is still sensitive to an assignment (i.e., intensional).

g→ g→ e

Going whole hog, pronouns have a generalized, recursive type:

pro ::= g→ e | g→ pro︸ ︷︷ ︸
g→g→e, g→g→g→e, ...

But, importantly, a unitary lexical semantics: �she0� := λg.g0.

30

Anaphora to intensions

What would it mean for a pronoun (or trace) to be anaphoric to an intension?

Perhaps: the value returned at an assignment (the anaphorically retrieved meaning)

is still sensitive to an assignment (i.e., intensional).

g→ g→ e

Going whole hog, pronouns have a generalized, recursive type:

pro ::= g→ e | g→ pro︸ ︷︷ ︸
g→g→e, g→g→g→e, ...

But, importantly, a unitary lexical semantics: �she0� := λg.g0.

30

Anaphora to intensions

What would it mean for a pronoun (or trace) to be anaphoric to an intension?

Perhaps: the value returned at an assignment (the anaphorically retrieved meaning)

is still sensitive to an assignment (i.e., intensional).

g→ g→ e

Going whole hog, pronouns have a generalized, recursive type:

pro ::= g→ e | g→ pro︸ ︷︷ ︸
g→g→e, g→g→g→e, ...

But, importantly, a unitary lexical semantics: �she0� := λg.g0.

30

µ for higher-order pronouns

Higher-order pronoun meanings require a higher-order combinator:

µ := λm.λg.mgg︸ ︷︷ ︸
(g→g→a)→g→a

(Aka the W combinator from Combinatory Logic.)

µ takes an expression m that’s anaphoric to an intension, and obtains an extension

by evaluating the anaphorically retrieved intension mg once more against g. In

other words, it turns a higher-order pronoun meaning into a garden-variety one:

µ(λg.g0︸ ︷︷ ︸
g→g→e

) = λg.g0 g︸ ︷︷ ︸
g→e

31

Recalling our binding derivation

λg. leftb

g→ t

λg.b

g→ e

b

e

Bill

λn.λg. left(ng)

(g→ e)→ g→ t

λg.λx. leftx

g→ e→ t

λg. leftg0

g→ t

...
...

...

t0 left

ρ ç

Λ0

subj. raising

32

λg.spent(g1 g0→b)b

λg.b

b

Bill

λn.λg.spent(g1 g0→ng)(ng)

λg.λx.spent(g1 g0→x)x

λg.spent(g1 g)g0

λg.g0

t0

λn.λg.spent(g1 g)(ng)

λg.spent(g1 g)

λn.λg.spent(ng)

λg.spent

spent

spent

λg.g1 g

λg.g1

it1

ρ ç

Λ0

ç

ç

ρ

µ

subj. raising

g→ t

g→ e

e

Bill

(g→ e)→ g→ t

g→ e→ t

g→ t

g→ e

t0

(g→ e)→ g→ t

g→ e→ t

(g→ e)→ g→ e→ t

g→ e→ e→ t

e→ e→ t

spent

g→ e

g→ g→ e

it1

ρ ç

Λ0

ç

ç

ρ

µ

subj. raising

33

Taking stock

The derived meaning is λg.spent(g1 g0→b)b. If the incoming assignment assigns 1

to λg.paycheckg0 (the intension of his0 paycheck), we’re home free.

Aside from the type assigned to her1 and the invocation of µ, this derivation is

exactly the same as a normal case of pronominal binding.

The secret sauce is generalizing the types of pronouns (but not their lexical

semantics!), and invoking µ for higher-typed pronoun instantiations.

34

Reconstruction works the same

We can pull off a similar trick for reconstruction: treat the trace as higher-order,

making it anaphoric to the intension of the topicalized expression.

1. [Hisi mom]j , every boyi likes tj .

Use µ to make sure everything fits together, and we’re done.

35

λg.eb(λx. likes(momx)x)

λh.λg.momg0

λg.momg0

his0 mom

λN.λg.eb(λx. likes(N gg0→x)x)

λg.λn.eb(λx. likes(ng0→x)x)

λg.eb(λx. likes(g1 g0→x)x)

λn.λg.eb(ng)

λg.eb

eb

every boy

λg.λx. likes(g1 g0→x)x
...

...
...

t0 likes t1

ρ ç

Λ1

ç

ρ

subj. raising

topicalization

g→ t

g→ g→ e

g→ e

his0 mom

(g→ g→ e)→ g→ t

g→ (g→ e)→ t

g→ t

(g→ e→ t)→ g→ t

g→ (e→ t)→ t

(e→ t)→ t

every boy

g→ e→ t

...
...

...

t0 likes t1

ρ ç

Λ1

ç

ρ

subj. raising

topicalization

36

Another familiar construct

Our grammatical interface for pronouns and binding has three pieces: ρ, ç, and µ.

ρ and ç form an applicative functor. Does this suite of three combinators also

correspond to something interesting?

Yes, it’s a monad (Moggi 1989, Wadler 1992,

1995, Shan 2002, Giorgolo & Asudeh 2012, Charlow 2014, 2017, . . .).

37

Another familiar construct

Our grammatical interface for pronouns and binding has three pieces: ρ, ç, and µ.

ρ and ç form an applicative functor. Does this suite of three combinators also

correspond to something interesting? Yes, it’s a monad (Moggi 1989, Wadler 1992,

1995, Shan 2002, Giorgolo & Asudeh 2012, Charlow 2014, 2017, . . .).

37

Equivalence of definitions

The usual presentation of monads is in terms of two functions η and �=:

η :: a → T a

�= :: T a → (a → T b)→ T b

(Satisfying certain laws, just like applicative functors.)

For the present case, the monad of interest is known as the Environment or Reader

monad. Its η is just the same as ρ. Its �= is:

�= := λm.λf .λg.f (mg)g

38

Monads don’t compose

There is an extremely sad fact about monads: unlike applicatives, they do not freely

compose! If you have two monads, there is no guarantee you will have a third, and

no general recipe for composing monads to yield new ones.

So applicatives are easy to work with in isolation. You can be confident that they will

play nicely with other applicative things in your grammar. Monads, not so much.

The moral is this: if you have got an Applicative functor, that is good;

if you have also got a Monad, that is even better! And the dual of the

moral is this: if you need a Monad, that is fine; if you need only an

Applicative functor, that is even better!

(McBride & Paterson 2008: 8)

39

Monads don’t compose

There is an extremely sad fact about monads: unlike applicatives, they do not freely

compose! If you have two monads, there is no guarantee you will have a third, and

no general recipe for composing monads to yield new ones.

So applicatives are easy to work with in isolation. You can be confident that they will

play nicely with other applicative things in your grammar. Monads, not so much.

The moral is this: if you have got an Applicative functor, that is good;

if you have also got a Monad, that is even better!

And the dual of the

moral is this: if you need a Monad, that is fine; if you need only an

Applicative functor, that is even better!

(McBride & Paterson 2008: 8)

39

Monads don’t compose

There is an extremely sad fact about monads: unlike applicatives, they do not freely

compose! If you have two monads, there is no guarantee you will have a third, and

no general recipe for composing monads to yield new ones.

So applicatives are easy to work with in isolation. You can be confident that they will

play nicely with other applicative things in your grammar. Monads, not so much.

The moral is this: if you have got an Applicative functor, that is good;

if you have also got a Monad, that is even better! And the dual of the

moral is this: if you need a Monad, that is fine; if you need only an

Applicative functor, that is even better!

(McBride & Paterson 2008: 8)

39

Variable-free semantics and the type of assignments

40

Pronouns as identity maps

Jacobson proposes we stop thinking of pronouns as assignment-relative and

index-oriented. Instead, she suggests we model pronouns as identity functions:

she := λx.x︸ ︷︷ ︸
e→e

How should these compose with things like transitive verbs, which are looking for

an individual, not a function from individuals to individuals?

Of course, this is exactly the same problem that comes up when you introduce

assignment-dependent meanings! And hence it admits the exact same solution.

41

Pronouns as identity maps

Jacobson proposes we stop thinking of pronouns as assignment-relative and

index-oriented. Instead, she suggests we model pronouns as identity functions:

she := λx.x︸ ︷︷ ︸
e→e

How should these compose with things like transitive verbs, which are looking for

an individual, not a function from individuals to individuals?

Of course, this is exactly the same problem that comes up when you introduce

assignment-dependent meanings! And hence it admits the exact same solution.

41

λg. leftg0

g→ t

λg.g0

g→ e

she0

λn.λg. left(ng)

(g→ e)→ g→ t

λg. left

g→ e→ t

left

e→ t

left

ç

ρ

λx. leftx

e→ t

λx.x

e→ e

she

λn.λx. left(nx)

(e→ e)→ e→ t

λx. left

e→ e→ t

left

e→ t

left

ç

ρ

In an important sense, then, the compositional apparatus underwriting variable-free

composition is equivalent to that underwriting assignment-friendly composition!

42

Heim & Kratzer (1998: 92): �t� = λx.x

92 Relative Clauses, Variables, Variable Binding

Let us abandon this line of approach. Here, then, is the dilemma: We would
like the trace to denote an individual so that we can interpret the nodes above
it, but we can't seem to find a suitable individual. There is no easy way out
within the confines of our current theoretical apparatus. It is time to explore the
utility of a genuinely new theoretical construct, the variable.

5.2.2 Variables

Variables were invented precisely to be like ordinary referring phrases in the
respects we want them to be, but sufficiently unlike them to avoid the puzzles
we just ran up against. A variable denotes an individual, but only relative to a
choice of an assignment of a value. What is a value assignment for a variable ?
The simplest definition for our present purposes is this :

(5) Preliminary definition: An assignment is an individual (that is, an element
of D (= De)) .

A trace under a given assignment denotes the individual that constitutes that
assignment; for example:

(6) The denotation of "t" under the assignment Texas is Texas.

An appropriate notation to abbreviate such statements needs to be a little more
elaborate than the simple [. . .] brackets we have used up to now. We will
indicate the assignment as a superscript on the brackets; for instance, (7) will
abbreviate (6) :

(7) [t]Texil. = Texas.

TIle general convention for reading this notation is as follows: Read "[a]"" as
"the denotation of a. under a " (where a. is a tree and a is an assignment) .

(7) exemplifies a special case of a general rule for the interpretation of traces,
which we can formulate as follows:

(8) If a i s a trace, then, for any assignment a , [a]" = a.

The decision to relativize the denotations of traces to assignments has reper
cussions throughout our system of rules . We must allow the denotations of larger
phrases that contain traces to be assignment-relative as well. For instance, a VP
whose object is a trace will not denote a fixed function in D<e,,» but may denote
different functions under different assigmnent functions; for instance:

43

Small caveat

This is not exactly how Jacobson’s system works. For one, it’s overlaid on a

categorial syntax. For another, Jacobson’s key combinator is Z:

Z := λf .λm.λx.f (mx)x

Does this remind you of anything?

It’s (a slightly shuffled version of) the �= operation from the Reader monad!

�= := λm.λf .λg.f (mg)g

44

Small caveat

This is not exactly how Jacobson’s system works. For one, it’s overlaid on a

categorial syntax. For another, Jacobson’s key combinator is Z:

Z := λf .λm.λx.f (mx)x

Does this remind you of anything?

It’s (a slightly shuffled version of) the �= operation from the Reader monad!

�= := λm.λf .λg.f (mg)g

44

Multiple pronouns

There is an important difference between assignments and individuals as

reference-fixing devices. Assignments are data structures that can in principle value

every free pronoun you need. But an individual can only value co-valued pronouns!

1. She saw her.

So a variable-free treatment of cases like these will inevitably give you something

like the following (I will spare you the details):

λx.λy .sawy x

45

Assignments, and “variables”, on demand

|(a× b)→ c|
|a → b → c| =

|c||a|·|b|
(|c||b|)|a|

= 1

Witness the curry/uncurry isomorphisms:

curryf := λx.λy .f (x, y) uncurryf := λ(x, y).f x y

In other words, by (iteratively) uncurrying a variable-free proposition, you end up

with a dependence on a sequence (tuple) of things. Essentially, an assignment.

uncurry(λx.λy .sawy x) = λ(x, y).sawy x = λp.sawp1 p0

Obversely, by iteratively currying a sequence(/tuple)-dependent proposition, you

end up with a higher-order function. Essentially, a variable-free meaning.

curry(λp.sawp1 p0) = curry(λ(x, y).sawy x) = λx.λy .sawy x

46

Variable-free semantics?

So variable-free semantics (can) have the same combinatorics as the variable-full

semantics. This is no great surprise: they’re both about compositionally dealing

with “incomplete” meanings.

Moreover, under the curry/uncurry isomorphisms, a variable-free proposition is

equivalent to (something) like an assignment dependent proposition.

Let’s call the whole thing off?

47

Back to applicatives

48

A bit o’ type theory

What is the type of an assignment function?

Standardly:

g ::= N→ e

But we want assignments to harbor values of all sorts of types. Not just for binding

reconstruction and paychecks, but for cross-categorial topicalization, scope

reconstruction, etc. Heim & Kratzer (1998: 213):

ga ::= N→ a

(An a-assignment is a function from indices into inhabitants of a.)

[This isn’t actually what H&K do, but I don’t understand what they do do.]

49

A bit o’ type theory

What is the type of an assignment function? Standardly:

g ::= N→ e

But we want assignments to harbor values of all sorts of types. Not just for binding

reconstruction and paychecks, but for cross-categorial topicalization, scope

reconstruction, etc. Heim & Kratzer (1998: 213):

ga ::= N→ a

(An a-assignment is a function from indices into inhabitants of a.)

[This isn’t actually what H&K do, but I don’t understand what they do do.]

49

A bit o’ type theory

What is the type of an assignment function? Standardly:

g ::= N→ e

But we want assignments to harbor values of all sorts of types. Not just for binding

reconstruction and paychecks, but for cross-categorial topicalization, scope

reconstruction, etc. Heim & Kratzer (1998: 213):

ga ::= N→ a

(An a-assignment is a function from indices into inhabitants of a.)

[This isn’t actually what H&K do, but I don’t understand what they do do.]

49

This is weird

If ga ::= N→ a, what type is the blue part in the following?

1. . . . and [VP buy the couch]1 she0 did [VP t1].

A couple of countervailing considerations:

ñ There’s a (free) pronoun, ∴ ge → t?

ñ There’s a (free) VP variable, ∴ ge→t → t?

Splitting the difference: ge→t → ge → t.

50

A non-problem

So is there a univocal type for propositions? If so, is every lexical entry specified

relative to an infinite sequence of assignments, one per type in the inductive type

hierarchy?

That seems bad.

But it is only bad if you’re working in the old, one-size-fits-all paradigm.

51

A non-problem

So is there a univocal type for propositions? If so, is every lexical entry specified

relative to an infinite sequence of assignments, one per type in the inductive type

hierarchy? That seems bad.

But it is only bad if you’re working in the old, one-size-fits-all paradigm.

51

A non-problem

So is there a univocal type for propositions? If so, is every lexical entry specified

relative to an infinite sequence of assignments, one per type in the inductive type

hierarchy? That seems bad.

But it is only bad if you’re working in the old, one-size-fits-all paradigm.

51

A non-problem

So is there a univocal type for propositions? If so, is every lexical entry specified

relative to an infinite sequence of assignments, one per type in the inductive type

hierarchy? That seems bad.

But it is only bad if you’re working in the old, one-size-fits-all paradigm.

51

Back to intensional pronouns (and traces)

With type-segregated assignment, we’ll have the following for a paycheck pronoun

or reconstruction-ready trace:

λg.g0 ≡λ λg.λh.g0 h︸ ︷︷ ︸
gge→e→ge→e

This projects up into the following meaning for a paycheck sentence (composition

here involves composing our old applicative with itself):

λg.λh.spent(g1 h0→b)b︸ ︷︷ ︸
gge→e→ge→t

So our sentence depends on two assignments.

52

An applicative after all

The pressure to µ is the pressure to assign a uniform type to sentences. Things that

depend on two assignments need to be turned into things that depend on just one,

so that our sentence can depend on just one.

There are reasons to want that if you’re working in the standard mold. There are no

reasons to want that if your perspective on composition is more modular.

The dual of the moral: if you need a Monad, that is fine; if you need only an

Applicative functor, that is even better!

53

Concluding

54

Getting modular (either via applicative functors or monads) dissolves theoretical

and empirical issues characteristic of one-size-fits-all approaches to composition.

Once we take a modular view on assignment-dependence, a strong parallel between

variable-free and variable-full approaches comes into view.

Don’t tie your hands if you don’t have to.

55

56

Barker, Chris. 2012. Quantificational binding does not require c-command. Linguistic Inquiry 43(4). 614–633.

https://doi.org/doi:10.1162/ling_a_00108.

Barker, Chris & Chung-chieh Shan. 2008. Donkey anaphora is in-scope binding. Semantics and Pragmatics 1(1).

1–46. https://doi.org/10.3765/sp.1.1.

Charlow, Simon. 2014. On the semantics of exceptional scope. New York University Ph.D. thesis.

http://semanticsarchive.net/Archive/2JmMWRjY/.

Charlow, Simon. 2017. The scope of alternatives: Indefiniteness and islands. Unpublished ms.

http://ling.auf.net/lingbuzz/003302.

Cooper, Robin. 1979. The interpretation of pronouns. In Frank Heny & Helmut S. Schnelle (eds.), Syntax and

semantics, volume 10: Selections from the Third Groningen Round Table, 61–92. New York: Academic Press.

Curry, Haskell B. & Robert Feys. 1958. Combinatory logic. Vol. 1. Amsterdam: North Holland.

Engdahl, Elisabet. 1986. Constituent questions. Vol. 27 (Studies in Linguistics and Philosophy). Dordrecht: Reidel.

https://doi.org/10.1007/978-94-009-5323-9.

Giorgolo, Gianluca & Ash Asudeh. 2012. (M, η,?): Monads for conventional implicatures. In Ana Aguilar Guevara,

Anna Chernilovskaya & Rick Nouwen (eds.), Proceedings of Sinn und Bedeutung 16, 265–278. MIT Working

Papers in Linguistics. http://mitwpl.mit.edu/open/sub16/Giorgolo.pdf.

Hardt, Daniel. 1999. Dynamic interpretation of verb phrase ellipsis. Linguistics and Philosophy 22(2). 187–221.

https://doi.org/10.1023/A:1005427813846.

Heim, Irene & Angelika Kratzer. 1998. Semantics in generative grammar. Oxford: Blackwell.

57

https://doi.org/doi:10.1162/ling_a_00108
https://doi.org/10.3765/sp.1.1
http://semanticsarchive.net/Archive/2JmMWRjY/
http://ling.auf.net/lingbuzz/003302
https://doi.org/10.1007/978-94-009-5323-9
http://mitwpl.mit.edu/open/sub16/Giorgolo.pdf
https://doi.org/10.1023/A:1005427813846

Jacobson, Pauline. 1999. Towards a variable-free semantics. Linguistics and Philosophy 22(2). 117–184.

https://doi.org/10.1023/A:1005464228727.

Jacobson, Pauline. 2000. Paycheck pronouns, Bach-Peters sentences, and variable-free semantics. Natural

Language Semantics 8(2). 77–155. https://doi.org/10.1023/A:1026517717879.

Kennedy, Chris. 2014. Predicates and formulas: Evidence from ellipsis. In Luka Crnǐc & Uli Sauerland (eds.), The

art and craft of semantics: A festschrift for Irene Heim, vol. 1 (MIT Working Papers in Linguistics), 253–277.

http://semanticsarchive.net/Archive/jZiNmM4N/.

Kiselyov, Oleg. 2015. Applicative abstract categorial grammars. In Makoto Kanazawa, Lawrence S. Moss &

Valeria de Paiva (eds.), NLCS’15. Third workshop on natural language and computer science, vol. 32 (EPiC

Series), 29–38.

Kobele, Gregory M. 2010. Inverse linking via function composition. Natural Language Semantics 18(2). 183–196.

https://doi.org/10.1007/s11050-009-9053-7.

McBride, Conor & Ross Paterson. 2008. Applicative programming with effects. Journal of Functional

Programming 18(1). 1–13. https://doi.org/10.1017/S0956796807006326.

Moggi, Eugenio. 1989. Computational lambda-calculus and monads. In Proceedings of the Fourth Annual

Symposium on Logic in computer science, 14–23. Pacific Grove, California, USA: IEEE Press.

https://doi.org/10.1109/lics.1989.39155.

Shan, Chung-chieh. 2002. Monads for natural language semantics. In Kristina Striegnitz (ed.), Proceedings of the

ESSLLI 2001 Student Session, 285–298. http://arxiv.org/abs/cs/0205026.

Shan, Chung-chieh & Chris Barker. 2006. Explaining crossover and superiority as left-to-right evaluation.

Linguistics and Philosophy 29(1). 91–134. https://doi.org/10.1007/s10988-005-6580-7.

58

https://doi.org/10.1023/A:1005464228727
https://doi.org/10.1023/A:1026517717879
http://semanticsarchive.net/Archive/jZiNmM4N/
https://doi.org/10.1007/s11050-009-9053-7
https://doi.org/10.1017/S0956796807006326
https://doi.org/10.1109/lics.1989.39155
http://arxiv.org/abs/cs/0205026
https://doi.org/10.1007/s10988-005-6580-7

Sternefeld, Wolfgang. 1998. The semantics of reconstruction and connectivity. Arbeitspapier 97, SFB 340.

Universität Tübingen & Universität Stuttgart, Germany.

Sternefeld, Wolfgang. 2001. Semantic vs. syntactic reconstruction. In Christian Rohrer, Antje Roßdeutscher &

Hans Kamp (eds.), Linguistic Form and its Computation, 145–182. Stanford: CSLI Publications.

Wadler, Philip. 1992. Comprehending monads. In Mathematical Structures in Computer Science, vol. 2 (special

issue of selected papers from 6th Conference on Lisp and Functional Programming), 461–493.

https://doi.org/10.1145/91556.91592.

Wadler, Philip. 1995. Monads for functional programming. In Johan Jeuring & Erik Meijer (eds.), Advanced

Functional Programming, vol. 925 (Lecture Notes in Computer Science), 24–52. Springer Berlin Heidelberg.

https://doi.org/10.1007/3-540-59451-5_2.

59

https://doi.org/10.1145/91556.91592
https://doi.org/10.1007/3-540-59451-5_2

	The standard theory, and its discontents
	Getting modular
	Getting higher-order
	Variable-free semantics and the type of assignments
	Back to applicatives
	Concluding

