
Meaning as computation?

Simon Charlow (Rutgers)

UCSD Ling 230 May 30, 2017

1

Some semantics

2

In search of semantics

Let’s imagine we have a tree with some terminals A, B, C, and some

binary-branching nodes XP, YP, as follows:

XP

A YP

B C

Our task as semanticists: deriving a meaning for XP, in terms of the

meanings of its parts, and the way those parts are put together.

ñ This is the folk sense of compositionality.

3

Montague’s (Frege’s) solution

Define a recursive interpretation function �·�, as follows:

�X Y� := A (�X�, �Y�)

Then, the interpretation for XP is calculated as follows:

XP

A YP

B C

�XP� =

A (�A�, �YP�)
= A (�A�,A (�B�, �C�))

4

Montague’s (Frege’s) solution

Define a recursive interpretation function �·�, as follows:

�X Y� := A (�X�, �Y�)

Then, the interpretation for XP is calculated as follows:

XP

A YP

B C

�XP� = A (�A�, �YP�)
=

A (�A�,A (�B�, �C�))

4

Montague’s (Frege’s) solution

Define a recursive interpretation function �·�, as follows:

�X Y� := A (�X�, �Y�)

Then, the interpretation for XP is calculated as follows:

XP

A YP

B C

�XP� = A (�A�, �YP�)
= A (�A�,A (�B�, �C�))

4

Taking a higher view







XP

A YP

B C






=

A

�A� A

�B� �C�

Thus, �·� is a structure-preserving map (i.e., a homomorphism) between

the syntactic and semantic algebras.

ñ This is Montague’s (1970) characterization of compositionality.

5

Some questions

Of course, at this point we have said very, very little!

A couple questions we can ask about this setup:

ñ What is the nature of �A�, �B�, and �C�?

ñ What is the nature of A?

6

The standard answer, Part 1

First, we specify what kinds of meanings we’re interested in (and draw

lexical entries — i.e., denotations for terminal nodes from this space):

τ ::= e | t | τ → τ

This means that the set of NL types τ consists of e (individuals), t

(truth-values), and (the inductive step) functions mapping things drawn

from τ into other things drawn from τ.

[This way of notating types is known as BNF (for Backus-Naur Form).]

7

The standard answer, Part 2

Second, we provide a more detailed characterization of A:

A (x, y) :=



x y if x : A→ B, and y : A (FA)

y x if x : A, and y : A→ B (BA)

Thus, A does forward or backward application, depending on the types of

the expressions to be combined (cf. Klein & Sag 1985).

8

An example







TP

John VP

saw Mary






=

A

�John� A

�saw� �Mary�

Which ends up reducing to �saw� �Mary� �John�.

ñ �John� and �Mary� are the individuals John and Mary, type e.

ñ �saw� is the f : e→ e→ t mapping two individuals to T iff they

stand in the seeing relation.

9

Ignorance was bliss

We can do some things w/this semantics, but there’s lots we can’t handle:

ñ Pronouns (and binding), intensionality (and intensional ops)

ñ Questions (i.e., as sets of propositions)

ñ Focus (and association with focus)

ñ Supplemental content (projection)

ñ Quantification (and scope)

We’re going to spend some time today going through these various

enrichments. With one very notable exception, the standard solutions

seem to bear a certain abstract similarity to each other!

10

Pronouns and binding

NL has variable expressions, which seem to acquire their meanings from

the context, or from other expressions in a sentence/discourse:

1. John saw her.

2. Every boyi turned in hisi homework late.

3. If a farmeri owns a donkeyj, shei feeds itj apples.

Currently, we’ve got no way to talk about the meanings of pronominal

expressions. So we’ll need to enrich our underlying architecture.

11

Pronouns: one strategy

Some things depend on the assignment in an essential way:

�heri�g := gi

Others meanings are unchanged (the assignment is idle):

�John�g := j �saw�g := saw

�·� is upgraded, to an assignment-friendly �·�g:

�X Y�g := A(�X�g, �Y�g)

12

An equivalent view

Some things depend on the assignment in an essential way:

�heri� := λg.gi

Others meanings are unchanged (the assignment is idle):

�John� := λg. j �saw� := λg.saw

�·� is upgraded, to an assignment-friendly �·�+:

�X Y�+ :=

A+ (�X�+, �Y�+)
:= λg.A(�X�+g, �Y�+g)

13

An equivalent view

Some things depend on the assignment in an essential way:

�heri� := λg.gi

Others meanings are unchanged (the assignment is idle):

�John� := λg. j �saw� := λg.saw

�·� is upgraded, to an assignment-friendly �·�+:

�X Y�+ := A+ (�X�+, �Y�+)
:=

λg.A(�X�+g, �Y�+g)

13

An equivalent view

Some things depend on the assignment in an essential way:

�heri� := λg.gi

Others meanings are unchanged (the assignment is idle):

�John� := λg. j �saw� := λg.saw

�·� is upgraded, to an assignment-friendly �·�+:

�X Y�+ := A+ (�X�+, �Y�+)
:= λg.A(�X�+g, �Y�+g)

13

Example derivation







TP

John VP

saw DP

heri







+

=

A+

λg. j A+

λg.saw λg.gi

= λg.saw gi j

14

Binding

Chierchia & McConnell-Ginet (2000) style:

�Opi X�g := �Op�g (λx.�X�g[i→x])

Heim & Kratzer (1998) style:

�λi X�g := λx.�X�g[i→x]

These rules are given syncategorematically: �Opi/λi X�g is not stated in

terms of �Opi/λi�g and �X�g. Why not?

15

Going lexicalist (e.g., Sternefeld 1998, 2001)







TP

John VP

saw DP

heri







=

A

λg. j A

λm.λn.λg.saw(mg)(ng) λg.gi

= λg.saw gi j

16

Duplicated work

All the approaches we’ve seen involve a degree of “generalization to the

worst case”: we lexically duplicate some predictable patterns:

�John�+ := λg. j �saw�+ := λg.saw

Or cf. the lexicalists’ lexical entries:

�saw� = λm.λn.λg.saw(mg)(ng) �ate� = λm.λn.λg.ate(mg)(ng)

17

Abstracting out the essence

18

What’s essential

Handling pronouns compositionally requires three pieces:

ñ Relatively fancy meanings for pronominal expressions

ñ A common way of dealing with boring (non-pronominal) expressions

ñ A common way of dealing with fancy meaning combination

The first is non-negotiable. The other two can be packaged up in various

ways, with varying degrees of lexical duplication.

What would things look like if we kept the lexicon maximally simple?

19

Two functions

A function for turning boring things into maximally boring fancy things:

ηx := λg.x

Along with a function for composing two fancy things to yield a third:

+F := λX .λg.F g(X g)

20

Two functions

A function for turning boring things into maximally boring fancy things:

ηx := λg.x

Along with a function for composing two fancy things to yield a third:

+F :=

λX .λg.F g(X g)

20

Two functions

A function for turning boring things into maximally boring fancy things:

ηx := λg.x

Along with a function for composing two fancy things to yield a third:

+F := λX .λg.F g(X g)

20

Example derivation







TP

John VP

saw DP

heri







=

λg.sawgi j

λg. j

j

λY .λg.sawgi (Y g)

λg.sawgi

λX .λg.saw(X g)

λg.saw

saw

λg.gi

η +

+

η

[Binary-branching nodes compose uniformly via A!]

21

Questions: intuition

A common approach to question semantics (Hamblin 1973, Karttunen

1977) treats questions as denoting sets of their possible answers:

�who did John see?� = {saw x j | human x}

And a common approach to deriving sets of answers is to begin by

treating �who� as a set of alternatives, {x | humanx}.

Like pronouns, we have an immediate compositional challenge: how to

compose sets of alternatives (cf. assignment-dependent meanings) to

yield bigger sets of alternatives (cf. assignment-dependent meanings)?

22

Alternative semantics (Hamblin 1973)







TP

John VP

saw DP

who







+

=

A+

{j} A+

{saw} {x | human x}

�X Y�+ := {A (x, y) | x ∈ �X�+, y ∈ �Y�+}

Result: {saw x j | human x}

23

Abstracting out the common pattern

Could we pull a similar trick as we did with pronouns? Finding two

functions that help us do our job without complicating the lexicon?

A function for turning boring things into maximally boring fancy things:

ηx :=

{x}

Along with a function for composing two fancy things to yield a third:

+F := λX .
{
f x | f ∈ F , x ∈ X

}

24

Abstracting out the common pattern

Could we pull a similar trick as we did with pronouns? Finding two

functions that help us do our job without complicating the lexicon?

A function for turning boring things into maximally boring fancy things:

ηx := {x}

Along with a function for composing two fancy things to yield a third:

+F :=

λX .
{
f x | f ∈ F , x ∈ X

}

24

Abstracting out the common pattern

Could we pull a similar trick as we did with pronouns? Finding two

functions that help us do our job without complicating the lexicon?

A function for turning boring things into maximally boring fancy things:

ηx := {x}

Along with a function for composing two fancy things to yield a third:

+F := λX .
{
f x | f ∈ F , x ∈ X

}

24

Example derivation







TP

John VP

saw DP

who







=

{
sawx j | humanx

}

{
j
}

j

λY .
{
sawx y | humanx, y ∈ Y

}

{sawx | humanx}

λX .{sawx | x ∈ X}

{saw}

saw

{x | humanx}

η +

+

η

[Binary-branching nodes compose uniformly via A!]

25

Focus

In association with focus, we consider an utterance, alongside other

things its speaker might have said:

1. I only introduced JOHN to Mary.

≈ I introduced John to Mary, and I didn’t introduce anyone else to Mary.

26

Example







TP

John VP

saw DP

MARY







+

=

A+

(j, {j}) A+

(saw, {saw}) (m, {x | human x})

= (sawmj, {saw x j | human x})

�X Y�+ := (A(�X�+1 , �Y�+1
)
,
{
A (x, y) | x ∈ �X�+2 , y ∈ �Y�+2

})

27

Finding our two functions

A simple injection function:

ηx := (x, {x})

Alongside a notion of fancy application:

+F := λX .
(
F1 X1,

{
f x | F ∈ F2, x ∈ X2

})

28

Supplemental content

1. John met Mary, who’s a linguist.

2. John didn’t meet Mary, who’s a linguist.

Supplemental content is somehow separate from everything else.

29

Example







TP

John VP

saw DP

Mary, who’s a linguist







+

=

A+

(j,T) A+

(saw,T) (m, ling m)

= (saw m j, ling m
)

�X Y�+ :=
(
A (�X�1, �Y�1), �X�2 ∧ �Y�2

)

What functions might underlie this pattern?

30

Scope

TP

John VP

saw DP

everybody

The problem of scope-taking: some expressions need access to more

than their immediate semantic context:

everybody (λx.saw x j)

31

Hm!

Is this generally handled in the same way as the other enrichments we’ve

seen so far? Nope! Gets a sui generis treatment:

TP

DPx

everybody

TP

John VP

saw tx

(Now, we do need a way to establish a link between the raised quantifier

and its trace. Generally, this is accomplished by exploiting the Binding

apparatus developed earlier.)

32

Even scope-taking yields

ηx := λk.kx

+F := λX .λk.F (λf .X (λx.k (f x)))

Take a deep breath.

You’re in the presence of continuations (Barker 2002).

33

Applicative functors

34

McBride & Paterson (2008)

35

A connection

The abstraction talked about in this recent, influential computer science

paper, is precisely the same abstraction we’ve been using to re-orient our

grammars to handle enriched notions of composition!

Our abstractions are all applicative functors!

Should we be surprised by this?

36

Functional languages

Functional programming languages are, just like NL grammars in the

Frege/Montague tradition, built on functions and arguments.

Just like NL semanticists, functional programmers frequently find

themselves hungering for effects, and ways to systematically express

concepts that lie outside the core features of their language.

37

Some common effects

ñ Environment (valuing variables in a global namespace)

ñ Nondeterminism (carrying out multiple computations in parallel)

ñ Pointed nondeterminism (flagging a particular value as central)

ñ Logging (keeping a side-log of execution-incidental info)

ñ Control (aborting a computation, jumping around inside a program)

These all correspond in a fairly direct way to things that are useful for

doing natural language semantics!

38

Other abstractions?

McBride & Paterson (2008) reference some other abstractions — monads

and arrows — as possible alternatives to applicative functors.

Are these abstractions useful for semantics? Are there any reasons to use

them, or even, perhaps, to prefer one abstraction to another?

And are there arguments for these kinds of approaches, over standard

ones? (Come see me Thursday to find out!)

39

And by the way

Did you notice that island-escaping readings are characteristic of (almost)

all the other enrichments we’ve considered today?

ñ If [a rich relative of mine dies] I’ll inherit a house.

ñ Every linguisti would be shocked if [Chomsky cited themi].

ñ Which linguist will be offended if [we invite which philosopher]?

ñ Dr. Svenson only complains if [MARY leaves the lights on].

ñ If [Mary, who’s a linguist, comes to the party], John will be upset.

Well, except for one!

ñ If [every linguist comes to the party], John will be upset.

Again, scope-taking is the sui generis effect, The odd one out!

40

Barker, Chris. 2002. Continuations and the nature of quantification. Natural Language Semantics

10(3). 211–242. http://dx.doi.org/10.1023/A:1022183511876.

Chierchia, Gennaro & Sally McConnell-Ginet. 2000. Meaning and grammar: An introduction to

semantics. Second edition. Cambridge, MA: MIT Press.

Hamblin, C. L. 1973. Questions in Montague English. Foundations of Language 10(1). 41–53.

Heim, Irene & Angelika Kratzer. 1998. Semantics in generative grammar. Oxford: Blackwell.

Karttunen, Lauri. 1977. Syntax and semantics of questions. Linguistics and Philosophy 1(1). 3–44.

http://dx.doi.org/10.1007/BF00351935.

Klein, Ewan & Ivan A. Sag. 1985. Type-driven translation. Linguistics and Philosophy 8(2).

163–201. http://dx.doi.org/10.1007/BF00632365.

McBride, Conor & Ross Paterson. 2008. Applicative programming with effects. Journal of

Functional Programming 18(1). 1–13. http://dx.doi.org/10.1017/S0956796807006326.

Montague, Richard. 1970. Universal grammar. Theoria 36(3). 373–398.

http://dx.doi.org/10.1111/j.1755-2567.1970.tb00434.x.

Sternefeld, Wolfgang. 1998. The semantics of reconstruction and connectivity. Arbeitspapier 97,

SFB 340. Universität Tübingen & Universität Stuttgart, Germany.

Sternefeld, Wolfgang. 2001. Semantic vs. syntactic reconstruction. In Christian Rohrer,

Antje Roßdeutscher & Hans Kamp (eds.), Linguistic Form and its Computation, 145–182.

Stanford: CSLI Publications.

41

http://dx.doi.org/10.1023/A:1022183511876
http://dx.doi.org/10.1007/BF00351935
http://dx.doi.org/10.1007/BF00632365
http://dx.doi.org/10.1017/S0956796807006326
http://dx.doi.org/10.1111/j.1755-2567.1970.tb00434.x

	Some semantics
	Abstracting out the essence
	Applicative functors

