The scope of alternatives: Indefinites and islands

Simon Charlow (Rutgers)

UCSD Semantics Babble June 1, 2017
Overview
Alternatives are useful for many things semanticists like to think about:

- Questions denote sets of their possible answers:
 \[
 [\text{who left?}] = \{ \text{left} \, x \mid \text{human} \, x \}\]

- Prosodic focus invokes things the speaker could have said:
 \[
 [\text{BOB left}]_f = \{ \text{left} \, x \mid x \in [\text{BOB}]_f \}\]

- And scalar items conjure up alternative utterances:
 \[
 [\text{someone left}]_s = \{ f \, \text{left} \mid f \in [\text{someone}]_s \}\]
Alternative semantics (Hamblin 1973, Rooth 1985) is useful, too:

- It’s one way (among others) to derive alternatives.
- Principally, though, it’s a pseudo-scope mechanism, used to get semantic action at a distance without island-violating movement.
This talk

A couple approaches to alternatives:

- Scope-based (Karttunen 1977)
- Alternative-semantic (Hamblin 1973, Rooth 1985)

I’ll sketch a scope-based theory that (unlike the above) explains:

- Island insensitivity
- Selectivity outside islands
- Interactions of alternatives and binding

Maybe the most satisfying bit: the theory uses tools that were under our noses the whole time (i.e., in the questions lit post-Karttunen 1977).
Alternatives via scope
Two key ingredients (Karttunen 1977)

First ingredient: a way to conjure alternative-typed things from the æther.

\[\eta :: t \rightarrow St \]
\[\eta := \lambda p. \{ p \} \]

Second ingredient: meanings that can scope over alternatives.

\[\text{who} :: (e \rightarrow St) \rightarrow St \]
\[[\text{who}] = \lambda f. \bigcup_{x \in \text{human}} f x \]

[I write ‘t’ for the type of propositions, and ‘S a’ for the type of (the characteristic function of) a set of a’s. I’ll only make explicit reference to worlds and assignments when absolutely necessary.]
A basic Karttunen-esque derivation

Here, we derive a meaning for *John met who?*

As with quantification, *scope-taking* is a crucial part of the story.
Generalizing the approach

Some like alternatives for indefinites (e.g., Kratzer & Shimoyama 2002):

\[
\llbracket \text{John saw a linguist} \rrbracket = \{ \text{saw } x \mid \text{ling } x \}\]

No problem! We can generalize the scopal account (Heim 2000):

\[
\eta : a \to Sa \\
[\eta] = \lambda x. \{ x \}
\]

\[
a \text{linguist} : (e \to S a) \to S a \\
[\text{a linguist}] = \lambda f. \bigcup_{x \in \text{ling}} f x
\]

[I’ve also generalized the types here, which will allow a linguist to induce sets of alternative individuals, alternative VP meanings, etc.]
Indefinites inducing alternatives

Here, we derive a meaning for *John met a linguist.*

\[
\begin{align*}
\text{St} &\quad \{\text{met } x \mid \text{human } x\}
\end{align*}
\]

\[
\lambda f. \bigcup_{x \in \text{ling}} f\ x
\]

\[
\lambda x. \{\text{met } x\}
\]

\[
\lambda x. \text{St}\{\text{met } x\}
\]

\[
\eta
\]

\[
\text{t}
\]

\[
\text{met } x\ j
\]

[Notice that we don’t want to commit ourselves to thinking of declarative sentences with indefinites and questions as *precisely* the same sort of object.]
Composes (and gets the right meaning), but has [island]-violating scoping of *which philosopher* (e.g., Huang 1982, Dayal 1996, Reinhart 1998).
Island-insubordination, more generally:

1. Exceptionally scoping indefinites:
 (Our focus today)
 If [a rich relative of mine dies] I’ll inherit a house.

2. Indeterminate pronouns:
 [[Dono hon-o yonda] kodomo]-mo yoku nemutta.
 which book-acc read child mo well slept
 ‘For every book x, the child who read x slept well.’

3. Association with focus:
 John only gripes when [MARY leaves the lights on].

4. Supplemental content:
 John gripes when [Mary, a talented linguist, leaves the lights on].

5. Presupposition projection:
 John gripes when [the King of France leaves the lights on].
This composes just fine, but allows only answers like *I read ‘Emma’* (e.g., von Stechow 1996, Hagstrom 1998, Sternefeld 2001, Cable 2010):

\[\lambda w. \text{read}_w (\text{the-book-of}_@ x) \ s \ | \ x \in \text{human}_@ \]

should be \(w \)!
Alternative semantics
Basics

First ingredient: all meanings are sets.

\[
\begin{align*}
\text{John} &:: S e \\
[\text{John}] &= \{ j \} \\
\text{met} &:: S (e \rightarrow e \rightarrow t) \\
[\text{met}] &= \{ \text{met} \}
\end{align*}
\]

\[
\begin{align*}
\text{a linguist} &:: S e \\
[\text{a linguist}] &= \{ x \mid \text{ling} \; x \}
\end{align*}
\]

Second ingredient: meaning combination is pointwise application.

\[
[A \; B] = \{ f \; x \mid f \in [A], \; x \in [B] \}
\]
A simple example: alternatives without movement

\[
\begin{align*}
\text{St} & \\
\text{Se} & \quad \text{S}(e \rightarrow t) \\
\text{John} & \\
\text{S}(e \rightarrow e \rightarrow t) & \quad \text{Se} \\
\text{saw} & \\
a \text{linguist} & \\
\end{align*}
\]

\[= \{\text{saw } x | \text{ ling } x\}\]
Island-escaping behavior, without movement

= \{ \text{if \(dies \, x\)} \, \text{house} \mid \text{relative \(x\)} \}
Issue #1: selectivity outside islands

When two alternative-inducing expressions live on island, they can take scope in different ways outside the island:

1. If \([a \text{ phenomenal lawyer}_l \text{ visits a filthy rich relative of mine}_r], I’ll inherit a fortune.\) \((\exists_l, r \gg if, \exists_l \gg if \gg \exists_r, \exists_r \gg if \gg \exists_l)\)

No go in alternative semantics! The meaning for the [island] (below) doesn’t have enough structure to distinguish lawyers and relatives. So there’s no way to percolate one, but not the other, over the conditional.

\(\{\text{visits } x \ y \mid \text{lawyer } y, \text{relative } x\}\)

[Because scope-based approaches have trouble with islands, they \textit{a fortiori} have a hard time with selectivity outside islands.]
Selectivity, more generally

Like exceptional scope behavior, selective exceptional scope is at least somewhat general:

1. \([\text{JOHN only gripes when [MARY leaves the lights on]}]_C\), and \([\text{MARY only gripes when [JOHN leaves the lights on]}]_{\sim C}\).

[Interestingly, there’s some data that seems to go against selectivity, as discussed by, e.g., Kratzer & Shimoyama (2002) (see also Beck 2006). Feel free to ask me about it.]
Issue #2: binding

Binding in a standard semantics, *sans* alternatives:

\[
[A_i B]^g = [A]^g (\lambda x. [B]^{g \rightarrow x})
\]

Binding in alternative semantics is problematic (Poesio 1996, Shan 2004):

\[
[A_i B]^g = \{ f \ g \mid f \in [A]^g, \ g \in ??? \}
\]

Needs to be a set of functions: \(\{ \lambda x \ldots [B]^{g \rightarrow x} \}\)

Already a set!

[Both of these “rules” should have a symmetric alternative that treats A as the argument.]
A theory
Predicative uses of indefinites

One of the basic uses of indefinites is in predicative position:

1. I’m a linguist.
2. Mary considers John a linguist.

Two possibilities for the basic meaning of indefinites — on the left, as a set of individuals (i.e., a predicate); on the right, as a GQ:

\[
\begin{align*}
\llbracket \text{a linguist} \rrbracket &= \{x \mid \text{ling} x\} \\
\text{type: } &\text{Se} \\
\llbracket \text{a linguist} \rrbracket &= \lambda f. \exists x \in \text{ling} : f x \\
\text{type: } &\text{((e \rightarrow t) \rightarrow t)}
\end{align*}
\]

No matter which you choose, you need a mapping from one to the other!
The predicative use as basic

Let’s suppose for concreteness that the predicative use of indefinites is basic (nothing much turns on this). What’s the mapping into GQs?
The predicative use as basic

Let’s suppose for concreteness that the predicative use of indefinites is basic (nothing much turns on this). What’s the mapping into GQs?

\[A m := \lambda f. \exists x \in m : f x \]

[If treating the GQ use as basic, the relevant mapping is \(\text{BE} Q := \{ x \mid \{ x \} \in Q \} \).]
A basic derivation

Here, we derive *John met a linguist*:

\[
\begin{align*}
\lambda x. t &
\quad \vdash \lambda x. (e \rightarrow t) \rightarrow t \\
&
\quad \vdash e \rightarrow t \\
&
\quad \vdash A \\
&
\quad \vdash \{x \mid \text{ling } x\} \\
&
\quad \vdash \text{met } x \ j
\end{align*}
\]

The result, as expected: \(\exists x \in \text{ling} : \text{met } x \ j. \)
An observation

There is an interesting interaction between A and the η operation for alternative sets (i.e., such that $\eta x = \{x\}$).

$$A(\eta x)$$
An observation

There is an interesting interaction between A and the η operation for alternative sets (i.e., such that $\eta x = \{x\}$).

$$A(\eta x) = \lambda f. \exists y \in \{x\} : f y$$
An observation

There is an interesting interaction between A and the η operation for alternative sets (i.e., such that $\eta x = \{x\}$).

$$A(\eta x) = \lambda f. \exists y \in \{x\} : f y = \lambda f. f x$$

Do you recognize this?
An observation

There is an interesting interaction between \(A \) and the \(\eta \) operation for alternative sets (i.e., such that \(\eta x = \{x\} \)).

\[
A(\eta x) = \lambda f. \exists y \in \{x\} : f y \\
= \lambda f. f x
\]

Do you recognize this? Sure, it’s just Partee’s (1986) LIFT operation, applied to \(x \)! In other words, \(A \) and \(\eta \) amount to a decomposition of LIFT!

\[
A \circ \eta = \text{LIFT}
\]

\[f \circ g := \lambda x. f(gx)\]
Partee (1986) triangle

This can all be summed up with the famous Partee triangle:

\[(a \rightarrow t) \rightarrow t \leftarrow \text{LIFT}_t \rightarrow a\]

This diagram commutes: where there exist multiple paths between two nodes, those paths are equivalent (which just amounts to \(A \circ \eta = \text{LIFT}\)).
To be more explicit, we can imagine a wh-phrase as composed of an indefinite and a [+WH] component. So for instance, the meaning of who would be “some person x has property P” with [+WH] applied to it. In other words: $\lambda P \exists x [\text{person}(x) \land P(x)]$, and $\{+WH\} \sim \lambda U \lambda W \lambda p[U(\lambda u. W(u)(p))]$. So [+WH] applied to “some person . . .” is $\lambda U \lambda W \lambda p[U(\lambda u. W(u)(p))] \ (\lambda P \exists x [\text{person}(x) \land P(x)]) = \lambda W \lambda p \exists x [\text{person}(x) \land W(x)(p)]$, as in (39).

In more familiar set-theoretic terms:

$$+wh :: ((e \to t) \to t) \to (e \to S t) \to S t$$
$$+wh := \lambda Q. \lambda f. \{ y \mid Q(\lambda x. y \in f x) \}$$

[In fact, this mapping from GQs into things that can scope over sets was already in Karttunen, but as a composition rule.]
Adding to the Partee (1986) triangle

\[
(a \rightarrow t) \rightarrow t \leftarrow \text{LIFT}_t \rightarrow a \quad (a \rightarrow Sb) \rightarrow Sb
\]

[The diagram still commutes! Exercise: verify this.]
My proposal: shift sets instead of GQs

That is, replace [+WH] with \(\gg = \), defined as follows (\(\eta \) is unchanged!):

\[
\begin{align*}
\eta \ ::= \ a \to Sa & \quad \gg = \ ::= Sa \to (a \to Sb) \to Sb \\
[\eta] = \lambda x. \{x\} & \quad [\gg =] = \lambda m. \lambda f. \bigcup_{x \in m} f x
\end{align*}
\]

The \(\gg = \) shifter just maps sets into Karttunen’s scopal meanings:

\[
\{x \mid \text{ling } x\} \gg = \lambda f. \bigcup_{x \in \text{ling } x} f x
\]

[Notice that Cresti’s [+WH] analysis actually allows us to generate strange denotations like \(\lambda \, p. \neg \exists x. \text{human } x \land p = \text{saw } x j \). This is a (weak) argument that applying \(\gg = \) to sets rather than GQs might be preferable. Stronger arguments TK.]
The Partee (1986) triangle++

\[(a \rightarrow t) \rightarrow t \quad \text{LIFT}_t \quad a \quad \text{LIFT}_{Sb} \quad (a \rightarrow Sb) \rightarrow Sb\]
A simple case, with a familiar derivation

\[
\begin{align*}
\eta &:: a \to Sa \\
\eta &:: S \to (a \to Sb) \to Sb \\
[\eta] &= \lambda x. \{ x \} \\
[\eta] &= \lambda m. \lambda f. \bigcup_{x \in m} m x \\
\end{align*}
\]
Two sources of alternatives

\[
\begin{align*}
&\text{Se} \\
&\text{ling} \\
&\text{a.} \text{ling} \\
&\Rightarrow (e \rightarrow \text{St}) \rightarrow \text{St} \\
&\Rightarrow e \rightarrow \text{St} \\
&\Rightarrow \lambda x \text{ St} \\
&\Rightarrow \lambda y \text{ St} \\
&\Rightarrow t \\
&\Rightarrow \text{met } y \ x
\end{align*}
\]

= \{ \text{met } y \ x \mid x \in \text{ling}, y \in \text{phil} \}
Some more facts about these operations

Like η and A, η and $\gg=$ form a decomposition of LIFT (e.g., Partee 1986):

$$(\eta x) \gg= \equiv \lambda f. f x$$

More generally, together they comprise something known as a monad (e.g., Shan 2002, Giorgolo & Asudeh 2012, Unger 2012, Charlow 2014).

- Monads are really useful when you want “fancy” things (like sets of alternatives) to interact with the function-argument Fregean bread-and-butter of compositional semantics.
Islands
Islands?

Because the theory is oriented around scope, islands seem problematic.

But they’re not! We can apply \gg to any set of alternatives!
Scoping the island

\[
\begin{align*}
\lambda x. S t &
\end{align*}
\]

\[
\begin{align*}
\Rightarrow (e \rightarrow S t) \rightarrow S t &
\end{align*}
\]

\[
\begin{align*}
e \rightarrow S t &
\end{align*}
\]

\[
\begin{align*}
\Rightarrow &
\end{align*}
\]

\[
\begin{align*}
S e &
\end{align*}
\]

\[
\begin{align*}
\{ x \mid \text{rel} \; x \} &
\end{align*}
\]

\[
\begin{align*}
\lambda x. S t &
\end{align*}
\]

\[
\begin{align*}
\Rightarrow &
\end{align*}
\]

\[
\begin{align*}
\eta &
\end{align*}
\]

\[
\begin{align*}
t &
\end{align*}
\]

\[
\begin{align*}
dies \; x &
\end{align*}
\]

\[
\begin{align*}
= \{ \text{dies} \; x \mid \text{rel} \; x \}
\end{align*}
\]
Scoping the island

= \{ \text{dies } x \Rightarrow \text{house} \mid \text{rel } x \}
Islands more generally:

For any monadic type constructor M, $\text{Left} \equiv \text{Right}$.

It’s as if m had scoped out of the island, without actually doing so!
Pied-piping the island: Bavarian German

1. **Das ist die Frau, [die\textsubscript{i} wenn du \textsubscript{t}\textsubscript{i} heiratest] bist du verrückt.**

 this is the woman who if you marry are you crazy

 ‘This is the woman that you are crazy if you marry her.’

2. ***Das ist die Frau, die\textsubscript{i} du verrückt bist [wenn du \textsubscript{t}\textsubscript{i} heiratest].**

 this is the woman who you crazy are if you marry

 [Is this contrast replicated in English?]
The situation is even more striking in Finnish (Huhmarniemi 2012). Here is the canonical word order when you modify a VP with a PP (V-P-Obj):

1. Pekka näki Merjan [kävellessään [kohti puistoa]].
 Pekka saw Merjan walk towards park
 ‘Pekka saw Merja when he was walking towards a/the park.’

But here is how it looks when you try to form a with the Obj:

2. [[Mità_i kohti t_i]_j kävellessään t_j]_k Pekka näki Merjan t_k?
 What towards walk Pekka saw Merjan
 ‘What was Pekka walking towards when he saw Merja?’

You get the mirror-image word order!
This kind of movement, generally

is called **roll-up** or (even better) **snowballing** pied-piping.

Overt and scopal (covert) forms of it are appealed for a variety of languages. We’ve already seen Bavarian German and Finnish.

Other examples include Gbe (overt, Aboh 2004), French (covert, Moritz & Valois 1994), and DP-internal word order (overt, Cinque 2005).
Higher-order meanings and selectivity
Indefinites on an island take scope in different ways outside the island:

1. If [a persuasive lawyer visits a relative of mine], I’ll inherit a house.
 \[\exists_{\text{lawyer}} \gg \text{if} \gg \exists_{\text{relative}}, \exists_{\text{relative}} \gg \text{if} \gg \exists_{\text{lawyer}}, \exists_{\text{lawyer}} \gg \exists_{\text{relative}} \gg \text{if} \]

2. Every grad would be overjoyed if [some paper on indefinites was discussed in a popular grad seminar being offered this term].
 \[\exists_{\text{seminar}} \gg \forall \gg \exists_{\text{paper}} \gg \text{if} \]

Indeed, such behavior seems to be essentially presupposed (if not directly argued for) by the dominant accounts of exceptionally scoping indefinites (cf. Reinhart 1997, Brasoveanu & Farkas 2011).
Building the island...

= \{ \text{visits } y \, x \mid \text{lawyer } x, \text{ relative } y \}
Executing our old exceptional scope trick...

\[
\{ \text{visits } y \mathrel{\times} x \mid \text{lawyer } x, \text{ relative } y \} \gg = \lambda f \cdot \bigcup_{p \in \{ \text{visits } y \mathrel{\times} x \mid \text{lawyer } x, \text{ relative } y \}} f \ p
= \lambda f \cdot \bigcup_{\text{lawyer } x, \text{ relative } y} f \ (\text{visits } y \ x)
\]

Oops... Looks like we’ve given both indefinites scope out of the island.

- Certainly, this is a possible reading (so, no over-generation)
- But it’s not the only reading (so, under-generation)
Building higher-order meanings

\[
S(St)
\xrightarrow{(e \rightarrow S(St)) \rightarrow S(St)} e \rightarrow S(St) \\
\quad \xrightarrow{\Rightarrow} \\
\quad \left\{ \begin{array}{c}
\text{Se} \\
\text{a.lawyer}
\end{array} \right. \\
\quad \xrightarrow{\Rightarrow} \\
\quad \left\{ \begin{array}{c}
\lambda x \ \\
S(St)
\end{array} \right.
\]

\[
\left\{ \begin{array}{c}
\eta
\end{array} \right.
\]

\[
\rightarrow (e \rightarrow St) \rightarrow St \\
\quad \xrightarrow{\Rightarrow}
\left\{ \begin{array}{c}
\text{Se} \\
\text{a.rel}
\end{array} \right. \\
\quad \xrightarrow{\Rightarrow}
\left\{ \begin{array}{c}
\lambda y \\
St
\end{array} \right.
\]

\[
\left\{ \begin{array}{c}
\eta
\end{array} \right.
\]

\[
\rightarrow (e \rightarrow St) \\
\quad \xrightarrow{\Rightarrow}
\left\{ \begin{array}{c}
\text{Se} \\
\text{a.lawyer}
\end{array} \right. \\
\quad \xrightarrow{\Rightarrow}
\left\{ \begin{array}{c}
\lambda x \\
St
\end{array} \right.
\]

\[
\left\{ \begin{array}{c}
\eta
\end{array} \right.
\]

\[
\text{visits} \ y \ x \\
\Rightarrow
\eta
\Rightarrow
\text{visits} \ y \ x
\]

\[
= \left\{ \text{visits} \ y \ x \ | \ \text{rel} \ y \right\} \ | \ \text{lawyer} \ x
\]

\[
= \left\{ \text{visits} \ y \ x \ | \ \text{lawyer} \ x \right\} \ | \ \text{rel} \ y
\]
Higher-order meanings

If the lawyers are \(L_1 \) and \(L_2 \) and the relatives are \(R_1 \) and \(R_2 \), these higher-order sets amount to the following:

\[
\begin{align*}
\{ & \text{visits } R_1 L_1, \text{visits } R_2 L_1 \}, \\
\{ & \text{visits } R_1 L_2, \text{visits } R_2 L_2 \} \\
\{ & \text{visits } R_1 L_1, \text{visits } R_1 L_2 \}, \\
\{ & \text{visits } R_2 L_1, \text{visits } R_2 L_2 \}
\end{align*}
\]
An exceptional scope derivation

$$\Rightarrow (St \to St) \to St$$

$$\Rightarrow S(St)$$

$$\{ \{ \text{visits} y \ x \ | \ \text{lawyer} \ x \} | \text{rel y} \}$$

$$\Rightarrow \lambda m \ St$$

$$\Rightarrow St \to St$$

$$\Rightarrow \eta$$

$$\Rightarrow t \ house$$

$$= \{ \text{if} (\exists x \in \text{lawyer} : \text{visits} y \ x) \ \text{house} | \text{rel y} \}$$
Generalized selectivity

Reminder: selectivity is also characteristic of association w/focus:

1. [JOHN only gripes when [MARY leaves the lights on]]_{C}, and [MARY only gripes when [JOHN leaves the lights on]] \sim C.

Our theory generalizes to such cases (focus can be treated monadically).
Summing up

We’ve learned that using η and \gg lets us exert a lot of control over which pieces of the island are evaluated where.

Using higher-order meanings (which come for free!) we can distinguish different layers of indefinite-ness, in a way that allows different indefinites on an island to be distinguished outside the island.
Binding
Consider the wide-scope indefinite reading of the following:

1. Every linguist[^i] is overjoyed [whenever a world-famous expert on indefinites cites her[^i]]. \((\exists \gg \forall)\)

There’s a puzzle here: if the [island] scopes over every linguist, how can the quantifier bind her?
A slight tweak

Simply moving explicit reference to assignments into the semantics allows for *binding reconstruction* (Sternefeld 1998):

\[
\eta \::= a \rightarrow Ma \\
\lbrack \eta \rbrack = \lambda x. \lambda g. \{x\} \\
\rbrack \Rightarrow \rbrack = \lambda m. \lambda f. \lambda g. \bigcup_{x \in mg} m x g
\]

\[
Ma ::= g \rightarrow Sa
\]

[See Kobele 2010, Kennedy 2014, and indeed the entire the dynamic-semantics literature (e.g., Barwise 1987, Groenendijk & Stokhof 1991, Muskens 1996) for independent motivation for assignment-sensitivity as a first-class part of semantic denotations.]
Rounding out the picture

Meanings for indefinites:

\[\text{a.ling} := \lambda g. \{ x \mid \text{ling} x \} \]

Meanings for pronouns:

\[\text{she}_0 := \lambda g. \{ g_0 \} \]
An example

\[\sim \lambda g. \{ \lambda h. \{ \text{cites } h_0 \ x \} \ | \ \text{expert } x \} \]
Higher-order derivations
A general account of pied piping!

So we’ve got a fully general account of covert pied-piping, one which allows a fine degree of control over where different things on an island are evaluated, within a restrictive theory of syntax-semantics interface.

Extends immediately to *overt* pied-piping, as well.
Because everything is put together with functional application (like any scopal theory of alternatives), there’s no need to say anything special about binding (cf. problems for alternative semantics).

At the same time, we have a full account of island-escaping readings.
Concluding
Summing up

Semantics with alternatives and alternative semantics are different things.

- While we understand very well how to use scope to do composition with alternatives (and have for some time), what’s been missing is an account that explains island-insensitivity, too.
- The current best theory of island-escaping readings, alternative semantics, has some lacunae (principally, selectivity and binding).

I tried to show that we don’t have to make any compromises.

- If we begin with our gold-standard theory of questions and then simply break off \Rightarrow from [who], we have a complete theory!
- A more general (and independently motivated) treatment of assignment-sensitivity completes the picture, allowing binding reconstruction and (c)overt pied-piping.
Something I didn’t discuss

On the last slide, I called alternative semantics “our current best theory of island-escaping readings”.

In fact, we improve on choice-functional analyses. Feel free to ask more.

