
Effectful composition in natural language semantics

Multiple functors, automating composition

Dylan Bumford (UCLA) Simon Charlow (Rutgers)

ESSLLI 2022, NUI Galway

1

Recap, and a little category theory

2

Denotations via functors

Expression Type Denotation

no cat Ce ::= (e→ t)→ t λc.¬∃x.catx ∧ cx
the cat Me ::= e | # x if cat = {x} else #

Sassy, a cat We ::= e× t ⟨s, cats⟩
she Re ::= r→ e λg.g0
which cat Se ::= {e} {x | catx}
SASSY Fe ::= e× {e} ⟨s, {x | x ∈ De}⟩
a cat De ::= s→ {e× s} λs.{⟨x, s++x⟩ | catx}
.

It is worth contemplating the hoops you’d need to jump through to develop a theory

of grammar in the standard mold that could handle all these effects (and more).

The theory would be incredibly compex, inflexible, and brittle.

3

Recap

A functor is a type constructor (read: notion of fanciness) that supports an fmap:

class Functor f where

fmap :: (a -> b) -> f a -> f b

-- fmap id == id

-- fmap (f . g) == fmap f . fmap g

The second of these laws can’t help but be satisfied. The first guarantees a kind of

“well-behavedness” (e.g., fmap f xs = [] doesn’t qualify).

Haskell will ensure that any Functor instances you declare are appropriately typed,

but it can’t prove that fmap id == id. That is your job.

4

Concrete example 1: mapping over lists

fmap-ing a function f :: a -> b over a list xs :: [a] yields a new list of type

[b], formed by applying f to each element of xs:

instance Functor [] where -- [] is the type constructor for lists

fmap f xs = [f x | x <- xs]

(In Haskell, fmap for lists is also known simply as map.)

A couple examples of how this works:

fmap succ [1, 2, 3]

== [succ 1, succ 2, succ 3]

== [2, 3, 4]

fmap even [1, 2, 3]

== [even 1, even 2, even 3]

== [False, True, False]

5

The functor laws for fmap f xs = [f x | x <- xs]

-- fmap id == id

fmap id xs

== [id x | x <- xs] -- def of fmap

== [x | x <- xs] -- def of id

== xs -- ==

-- fmap (f . g) == fmap f . fmap g

fmap (f . g) xs

== [(f . g) x | x <- xs] -- def of fmap

== [f (g x) | x <- xs] -- def of (.)

== fmap f [g x | x <- xs] -- def of fmap

== fmap f (fmap g xs) -- def of fmap

== (fmap f . fmap g) xs -- def of (.)

6

The functor laws for fmap f xs = [f x | x <- xs]

-- fmap id == id

fmap id xs

== [id x | x <- xs] -- def of fmap

== [x | x <- xs] -- def of id

== xs -- ==

-- fmap (f . g) == fmap f . fmap g

fmap (f . g) xs

== [(f . g) x | x <- xs] -- def of fmap

== [f (g x) | x <- xs] -- def of (.)

== fmap f [g x | x <- xs] -- def of fmap

== fmap f (fmap g xs) -- def of fmap

== (fmap f . fmap g) xs -- def of (.)

6

Concrete example 2: mapping over context-sensitive meanings

fmap-ing f :: a -> b over rx :: r -> a yields a context-sensitive r -> b by

reading in some r, using it to get a value out of rx, and applying f to the result:

instance Functor ((->) r) where -- (->) r is what we're calling R

fmap f rx = f . rx

-- == \r -> f (rx r)

A couple examples of how this works, assuming var2 r = r!!2:

fmap succ var2

== succ . var2

== \r -> succ (var2 r)

== \r -> succ (r!!2)

fmap even var2

== even . var2

== \r -> even (var2 r)

== \r -> even (r!!2)

Suppose we pass in [7,8,9] as r. What do we get?

10, False.

7

Concrete example 2: mapping over context-sensitive meanings

fmap-ing f :: a -> b over rx :: r -> a yields a context-sensitive r -> b by

reading in some r, using it to get a value out of rx, and applying f to the result:

instance Functor ((->) r) where -- (->) r is what we're calling R

fmap f rx = f . rx

-- == \r -> f (rx r)

A couple examples of how this works, assuming var2 r = r!!2:

fmap succ var2

== succ . var2

== \r -> succ (var2 r)

== \r -> succ (r!!2)

fmap even var2

== even . var2

== \r -> even (var2 r)

== \r -> even (r!!2)

Suppose we pass in [7,8,9] as r. What do we get? 10, False.

7

The functor laws for fmap f rx = f . rx

-- fmap id == id

fmap id rx

== id . rx -- def of fmap

== rx -- id is identity element for (.)

-- fmap (f . g) == fmap f . fmap g

fmap (f . g) rx

== (f . g) . rx -- def of fmap

== f . (g . rx) -- (.) is associative

== fmap f (g . rx) -- def of fmap

== fmap f (fmap g rx) -- def of fmap

== (fmap f . fmap g) rx -- def of (.)

8

The functor laws for fmap f rx = f . rx

-- fmap id == id

fmap id rx

== id . rx -- def of fmap

== rx -- id is identity element for (.)

-- fmap (f . g) == fmap f . fmap g

fmap (f . g) rx

== (f . g) . rx -- def of fmap

== f . (g . rx) -- (.) is associative

== fmap f (g . rx) -- def of fmap

== fmap f (fmap g rx) -- def of fmap

== (fmap f . fmap g) rx -- def of (.)

8

Categories

A category is a database of stuff, related in a compositional way:

A collection of objects (A,B,C, . . .) stuff

A collection of morphisms between objects (f : A→ B, . . .) related

A composition operation ◦ such that for any f : A→ B and g : B→ C , there is

a morphism g ◦ f : A→ C (pronounced, ‘g after f ’) compositionally

Composition should be well-behaved in the following sense:

Associativity: (f ◦ g) ◦ h = f ◦ (g ◦ h) (neutrally: ‘f ◦ g ◦ h’)

For each object x, there’s an an identity morphism idX : X →X, such that

given f : A→ B, f ◦ idA = f , and idB ◦ f = f .

9

Diagrammatically

B

A

C

g

idB

idA

f

g◦f

idC

10

Examples of categories

The category Set. . .

Objects are sets; morphisms are set-theoretic functions between sets

◦ is function composition, (f ◦ g)x = f (gx)

The category Hask. . . 1

Objects are Haskell types; morphisms are typed Haskell functions

◦ is composition of Haskell functions, (f . g) x = f (g x)

Any preorder (S,à). . .

Objects are the elements of S; f : a→ b iff a à b

Reflexivity and transitivity of à make a category

1 Not really (non-termination complicates things), but close enough to be illuminating, useful.
11

Functors

A functor is a type constructor with an fmap:

class Functor f where

fmap :: (a -> b) -> f a -> f b -- fmap id == id

-- fmap (f . g) == fmap f . fmap g

In terms of categories, a functor F is a mapping between categories C and D. . .

F associates each a in C with F(a) in D (cf. type constructor)

F associates each f : a→ b in C with F(f) : F(a)→ F(b) in D (cf. fmap)

. . . Which preserves the compositional structure of C:

F(ida) = idF(a) F(f ◦ g) = F(f) ◦ F(g) (cf. fmap laws)

An endofunctor is a functor from C to C (e.g., from Hask to Hask).

12

Diagrammatically

B

A

C

F(B)

F(A)

F(C)

g

f

g◦f

F(g)

F(f)

F(g◦f)

13

Why categories?

While we will not foreground category-theoretic considerations in this course,

composition and compositionality will be central concerns.

From this vantage, we see that the essence of functors is transferable skills:

Having a functor F means: whatever I know how to do in some “lower” space,

I know how to do in the “higher” space characterized by F .

We’d invite you to think of the diagram on the previous slide as a (very skeletal)

schematization of this grammatical “lifting”:

Old grammar + functorial F = new grammar that seamlessly deals with F

Toss a functor in, shake, and reap the rewards.

Could it really be so simple? Actually, yeah, if you line things up in the right way.

14

Why categories?

While we will not foreground category-theoretic considerations in this course,

composition and compositionality will be central concerns.

From this vantage, we see that the essence of functors is transferable skills:

Having a functor F means: whatever I know how to do in some “lower” space,

I know how to do in the “higher” space characterized by F .

We’d invite you to think of the diagram on the previous slide as a (very skeletal)

schematization of this grammatical “lifting”:

Old grammar + functorial F = new grammar that seamlessly deals with F

Toss a functor in, shake, and reap the rewards.

Could it really be so simple?

Actually, yeah, if you line things up in the right way.

14

Why categories?

While we will not foreground category-theoretic considerations in this course,

composition and compositionality will be central concerns.

From this vantage, we see that the essence of functors is transferable skills:

Having a functor F means: whatever I know how to do in some “lower” space,

I know how to do in the “higher” space characterized by F .

We’d invite you to think of the diagram on the previous slide as a (very skeletal)

schematization of this grammatical “lifting”:

Old grammar + functorial F = new grammar that seamlessly deals with F

Toss a functor in, shake, and reap the rewards.

Could it really be so simple? Actually, yeah, if you line things up in the right way.

14

Composition with functors: some immediate successes

St

meow • {x | catx}

Se

{x | catx}
which cat

Se→ St

λS.meow • S

e→ t

meow

meowed

•

Wt

meow • ⟨s, cats⟩

We

⟨s, cats⟩
Sassy, a cat

We→ Wt

λW.meow •W

e→ t

meow

meowed

•

Rt

meow • λg.g0

Re

λg.g0
she0

Re→ Rt

λR.meow • R

e→ t

meow

meowed

•

15

Some more puzzling configurations

?

e

m

Mary

W(e→ t)

see • ⟨s, cats⟩
= ⟨sees, cats⟩

We→ W(e→ t)

λW.see •W

e→ e→ t

see

saw

We

⟨s, cats⟩
Sassy, a cat•

??

We

⟨m, lingm⟩
Mary, a linguist

W(e→ t)

see • ⟨s, cats⟩
= ⟨sees, cats⟩

We→ W(e→ t)

λW.see •W

e→ e→ t

see

saw

We

⟨s, cats⟩
Sassy, a cat•

???

Se

{x | lingx}
a linguist

W(e→ t)

see • ⟨s, cats⟩
= ⟨sees, cats⟩

We→ W(e→ t)

λW.see •W

e→ e→ t

see

saw

We

⟨s, cats⟩
Sassy, a cat•

16

Functorial case study: variable-free semantics

17

The ‘standard’ picture

�A B� ::=

�A��B� if A :: σ→ τ, B :: σ fa

�B��A� if A :: σ, B :: σ→ τ ba

�A�∩ �B� if A,B :: σ→ t pm

�A� ◦ �B� if A :: τ→ υ, B :: σ→ τ fc

�B� ↾ �A� if A :: σ→ t, B :: σ→ τ→ t pr

. . . if

18

Environment-dependence

Natural languages have free and bound pro-forms.

1. John saw her. I wouldn’t _ if I were you.

2. Everybodyi did theiri homework. When I’m supposed to worki I can’t _i.

Standardly: meanings depend on environments (ways of valuing free variables).

σ ::= e | t | σ → σ τ ::= Rσ ::= r→ σ

Interpret binary combination via environment-sensitive functional application.

�α β� := λr .�α�︸ ︷︷ ︸
R(b→c)

r (�β�︸ ︷︷ ︸
Rb

r)

︸ ︷︷ ︸
Rc

19

A couple examples

Rt

λr .sawr0 j

Re

λr . j

John

R(e→ t)

λr .sawr0

R(e→ e→ t)

λr .saw

saw

Re

λr .r0
her0

Rt

λr .knows(dadr1)(momr0)

Re

λr .momr0

Re

λr .r0
he0

R(e→ e)

λr .mom

’s mom

R(e→ t)

λr .knows(dadr1)

R(e→ e→ t)

λr .knows

knows

Re

λr .dadr1

Re

λr .r1
she1

R(e→ e)

λr .dad

’s dad

Apply the result to a salient environment, i.e., assignment

20

Pronouns as identity maps

Jacobson (1999) says not to treat pronouns as indexed and assignment-relative.

Instead: model pronouns as identity functions:

Ra ::= e→ a she := λx.x︸ ︷︷ ︸
Re

How should these compose with things like transitive verbs, which are looking for

an individual, not a function from individuals to individuals?

The tension here is similar to what Dylan discussed yesterday. Expressions may

behave as if they have type e, but carry aspects of meanings too ‘big’ to fit inside e.

e ̸≃ Re

21

Pronouns as identity maps

Jacobson (1999) says not to treat pronouns as indexed and assignment-relative.

Instead: model pronouns as identity functions:

Ra ::= e→ a she := λx.x︸ ︷︷ ︸
Re

How should these compose with things like transitive verbs, which are looking for

an individual, not a function from individuals to individuals?

The tension here is similar to what Dylan discussed yesterday. Expressions may

behave as if they have type e, but carry aspects of meanings too ‘big’ to fit inside e.

e ̸≃ Re

21

Heim & Kratzer (1998: 92): �t� = λx.x

92 Relative Clauses, Variables, Variable Binding

Let us abandon this line of approach. Here, then, is the dilemma: We would
like the trace to denote an individual so that we can interpret the nodes above
it, but we can't seem to find a suitable individual. There is no easy way out
within the confines of our current theoretical apparatus. It is time to explore the
utility of a genuinely new theoretical construct, the variable.

5.2.2 Variables

Variables were invented precisely to be like ordinary referring phrases in the
respects we want them to be, but sufficiently unlike them to avoid the puzzles
we just ran up against. A variable denotes an individual, but only relative to a
choice of an assignment of a value. What is a value assignment for a variable ?
The simplest definition for our present purposes is this :

(5) Preliminary definition: An assignment is an individual (that is, an element
of D (= De)) .

A trace under a given assignment denotes the individual that constitutes that
assignment; for example:

(6) The denotation of "t" under the assignment Texas is Texas.

An appropriate notation to abbreviate such statements needs to be a little more
elaborate than the simple [. . .] brackets we have used up to now. We will
indicate the assignment as a superscript on the brackets; for instance, (7) will
abbreviate (6) :

(7) [t]Texil. = Texas.

TIle general convention for reading this notation is as follows: Read "[a]"" as
"the denotation of a. under a " (where a. is a tree and a is an assignment) .

(7) exemplifies a special case of a general rule for the interpretation of traces,
which we can formulate as follows:

(8) If a i s a trace, then, for any assignment a , [a]" = a.

The decision to relativize the denotations of traces to assignments has reper
cussions throughout our system of rules . We must allow the denotations of larger
phrases that contain traces to be assignment-relative as well. For instance, a VP
whose object is a trace will not denote a fixed function in D<e,,» but may denote
different functions under different assigmnent functions; for instance:

22

Three approaches to composition

Environment-insensitive composition:

f x : b

f : a→ b x : a

Environment-sensitive composition everywhere:

λg.f g(xg) : Rb

f : R(a→ b) x : Ra

Jacobson’s approach: Environment-sensitive composition, on demand:

λx.f (mx) : Rb
G

f : a→ b m : Ra

λx.f (mx)x : e→ b
Z

f : a→ e→ b m : Ra

23

VFS derivation

eb(λx.thinks(sawxa)x) : t

eb : (e→ t)→ t λx.thinks(sawxa)x : e→ t
Z

thinks : t→ e→ t λx.sawxa : Rt
G

λκ.κ a : (e→ t)→ t
Lift

a : e

λx.sawx : R(e→ t)
G

saw : e→ e→ t λx.x : Re

Despite differences of presentation, we can clearly see that G is none other than R’s

fmap (though presented here as a binary operation).

24

VFS derivation

eb(λx.thinks(sawxa)x) : t

eb : (e→ t)→ t λx.thinks(sawxa)x : e→ t
Z

thinks : t→ e→ t λx.sawxa : Rt
G

λκ.κ a : (e→ t)→ t
Lift

a : e

λx.sawx : R(e→ t)
G

saw : e→ e→ t λx.x : Re

Despite differences of presentation, we can clearly see that G is none other than R’s

fmap (though presented here as a binary operation).

24

Multiple pronouns

Assignments are data structures that can in principle value every free pronoun you

need. But an individual can only value co-valued pronouns!

3. She saw her.

So a variable-free treatment of cases like these must give something like this:

λx.λy.sawyx︸ ︷︷ ︸
R(Rt)

Can we derive something of this type, using our existing apparatus?

25

Functors compose

From the functoriality of F and G alone, we may deduce the functoriality of F ◦G:

(•)((•)f) :: F (Ga)→ F (Gb)

(•)f :: Ga→Gb

f :: a→ b

•

•

Prelude> :t fmap . fmap

fmap . fmap

:: (Functor f1, Functor f2) =>

(a -> b) ->

f1 (f2 a) ->

f1 (f2 b)

In other words, the composite fmap (•) is given by (•) ◦ (•)!

We’ll consider composition of functors many times in this course.

We’ll sometimes simplify notation, writing FGa, FGHa, etc. (Why)’s this ok?

26

Ross Paterson’s Data.Functor.Compose (on Hackage)

module Data.Functor.Compose (

Compose(..),

) where

newtype Compose f g a = Compose { getCompose :: f (g a) }

instance (Functor f, Functor g) => Functor (Compose f g) where

fmap f (Compose x) = Compose (fmap (fmap f) x)

27

https://hackage.haskell.org/package/transformers-0.3.0.0/docs/src/Data-Functor-Compose.html

fmap fmap

Composition of functors alone will not be enough to generate every meaning we

need. To derive sentences with multiple pronouns, we must also fmap fmap!

(•)(•) :: F (a→ b)→ F (Ga→Gb)

(•) :: (a→ b)→Ga→Gb

•

Prelude> :t fmap fmap

fmap fmap

:: (Functor f1, Functor f2) =>

f1 (a -> b) ->

f1 (f2 a -> f2 b)

Nullary occurrences of our functorial combinators raise difficult questions about

the syntax and the relationship between syntax and semantics.

28

Hardcore VFS derivation: John said she saw her

R(Rt)

R(R(e→ t))→ R(Rt)

R(e→ t)→ Rt

(e→ t)→ t

e

John

R(R(e→ t))

R(Rt)→ R(R(e→ t))

Rt→ R(e→ t)

t→ e→ t

said

R(Rt)

R(Re→ Rt)→ R(Rt)

(Re→ Rt)→ Rt

Re

she

R(Re→ Rt)

R(e→ t)

Re→ R(e→ t)

e→ e→ t

saw

Re

her

R(a→ b)→ R(Ra→ Rb)

(a→ b)→ Ra→ Rb

(•)

•

•

LIFT

•

• •

LIFT

•

•

29

Mfw spending an hour on the last slide

We’re a long way from homomorphic. . .

30

Mfw spending an hour on the last slide

We’re a long way from homomorphic. . .

30

Comments, questions, concerns

Are occurrences of (•) actually instantiated in the syntax??

How is this practical? LIFT and (•) can apply iteratively. How would we ever know

when to stop, or that a new analysis was not around the next corner?

The system is extremely unwieldy. Derivations are difficult to construct and

significantly more complex than the readily justifiable syntax.

What about PM, etc? How does (•) help us with, e.g., dog near her?

Must we always be committed to higher-order meanings whenever we are in the

presence of multiple effectful things? Could get ugly. . .

Empirical adequacy: binding does not require c-command!

31

Comments, questions, concerns

Are occurrences of (•) actually instantiated in the syntax??

How is this practical? LIFT and (•) can apply iteratively. How would we ever know

when to stop, or that a new analysis was not around the next corner?

The system is extremely unwieldy. Derivations are difficult to construct and

significantly more complex than the readily justifiable syntax.

What about PM, etc? How does (•) help us with, e.g., dog near her?

Must we always be committed to higher-order meanings whenever we are in the

presence of multiple effectful things? Could get ugly. . .

Empirical adequacy: binding does not require c-command!

31

Comments, questions, concerns

Are occurrences of (•) actually instantiated in the syntax??

How is this practical? LIFT and (•) can apply iteratively. How would we ever know

when to stop, or that a new analysis was not around the next corner?

The system is extremely unwieldy. Derivations are difficult to construct and

significantly more complex than the readily justifiable syntax.

What about PM, etc? How does (•) help us with, e.g., dog near her?

Must we always be committed to higher-order meanings whenever we are in the

presence of multiple effectful things? Could get ugly. . .

Empirical adequacy: binding does not require c-command!

31

Comments, questions, concerns

Are occurrences of (•) actually instantiated in the syntax??

How is this practical? LIFT and (•) can apply iteratively. How would we ever know

when to stop, or that a new analysis was not around the next corner?

The system is extremely unwieldy. Derivations are difficult to construct and

significantly more complex than the readily justifiable syntax.

What about PM, etc? How does (•) help us with, e.g., dog near her?

Must we always be committed to higher-order meanings whenever we are in the

presence of multiple effectful things? Could get ugly. . .

Empirical adequacy: binding does not require c-command!

31

Comments, questions, concerns

Are occurrences of (•) actually instantiated in the syntax??

How is this practical? LIFT and (•) can apply iteratively. How would we ever know

when to stop, or that a new analysis was not around the next corner?

The system is extremely unwieldy. Derivations are difficult to construct and

significantly more complex than the readily justifiable syntax.

What about PM, etc? How does (•) help us with, e.g., dog near her?

Must we always be committed to higher-order meanings whenever we are in the

presence of multiple effectful things? Could get ugly. . .

Empirical adequacy: binding does not require c-command!

31

Comments, questions, concerns

Are occurrences of (•) actually instantiated in the syntax??

How is this practical? LIFT and (•) can apply iteratively. How would we ever know

when to stop, or that a new analysis was not around the next corner?

The system is extremely unwieldy. Derivations are difficult to construct and

significantly more complex than the readily justifiable syntax.

What about PM, etc? How does (•) help us with, e.g., dog near her?

Must we always be committed to higher-order meanings whenever we are in the

presence of multiple effectful things? Could get ugly. . .

Empirical adequacy: binding does not require c-command!

31

Comments, questions, concerns

Are occurrences of (•) actually instantiated in the syntax??

How is this practical? LIFT and (•) can apply iteratively. How would we ever know

when to stop, or that a new analysis was not around the next corner?

The system is extremely unwieldy. Derivations are difficult to construct and

significantly more complex than the readily justifiable syntax.

What about PM, etc? How does (•) help us with, e.g., dog near her?

Must we always be committed to higher-order meanings whenever we are in the

presence of multiple effectful things? Could get ugly. . .

Empirical adequacy: binding does not require c-command!

31

Slightly less puzzled

We can improve on all these fronts, and we will.

But empirically we are in a reasonable place: our functors enable us to ignore the

extra structure in which our values of compositional interest are embedded.

!

e

m

Mary

W(e→ t)

see • ⟨s, cats⟩
= ⟨sees, cats⟩

We→ W(e→ t)

λW.see •W

e→ e→ t

see

saw

We

⟨s, cats⟩
Sassy, a cat•

!!

We

⟨m, lingm⟩
Mary, a linguist

W(e→ t)

see • ⟨s, cats⟩
= ⟨sees, cats⟩

We→ W(e→ t)

λW.see •W

e→ e→ t

see

saw

We

⟨s, cats⟩
Sassy, a cat•

!!

Se

{x | lingx}
a linguist

W(e→ t)

see • ⟨s, cats⟩
= ⟨sees, cats⟩

We→ W(e→ t)

λW.see •W

e→ e→ t

see

saw

We

⟨s, cats⟩
Sassy, a cat•

32

Slightly less puzzled

We can improve on all these fronts, and we will.

But empirically we are in a reasonable place: our functors enable us to ignore the

extra structure in which our values of compositional interest are embedded.

Wt

. . .

e

m

Mary

W(e→ t)

see • ⟨s, cats⟩
= ⟨sees, cats⟩

We→ W(e→ t)

λW.see •W

e→ e→ t

see

saw

We

⟨s, cats⟩
Sassy, a cat•

!!

We

⟨m, lingm⟩
Mary, a linguist

W(e→ t)

see • ⟨s, cats⟩
= ⟨sees, cats⟩

We→ W(e→ t)

λW.see •W

e→ e→ t

see

saw

We

⟨s, cats⟩
Sassy, a cat•

!!

Se

{x | lingx}
a linguist

W(e→ t)

see • ⟨s, cats⟩
= ⟨sees, cats⟩

We→ W(e→ t)

λW.see •W

e→ e→ t

see

saw

We

⟨s, cats⟩
Sassy, a cat•

32

Slightly less puzzled

We can improve on all these fronts, and we will.

But empirically we are in a reasonable place: our functors enable us to ignore the

extra structure in which our values of compositional interest are embedded.

Wt

. . .

e

m

Mary

W(e→ t)

see • ⟨s, cats⟩
= ⟨sees, cats⟩

We→ W(e→ t)

λW.see •W

e→ e→ t

see

saw

We

⟨s, cats⟩
Sassy, a cat•

W(Wt)

. . .

We

⟨m, lingm⟩
Mary, a linguist

W(e→ t)

see • ⟨s, cats⟩
= ⟨sees, cats⟩

We→ W(e→ t)

λW.see •W

e→ e→ t

see

saw

We

⟨s, cats⟩
Sassy, a cat•

!!

Se

{x | lingx}
a linguist

W(e→ t)

see • ⟨s, cats⟩
= ⟨sees, cats⟩

We→ W(e→ t)

λW.see •W

e→ e→ t

see

saw

We

⟨s, cats⟩
Sassy, a cat•

32

Slightly less puzzled

We can improve on all these fronts, and we will.

But empirically we are in a reasonable place: our functors enable us to ignore the

extra structure in which our values of compositional interest are embedded.

Wt

. . .

e

m

Mary

W(e→ t)

see • ⟨s, cats⟩
= ⟨sees, cats⟩

We→ W(e→ t)

λW.see •W

e→ e→ t

see

saw

We

⟨s, cats⟩
Sassy, a cat•

W(Wt)

. . .

We

⟨m, lingm⟩
Mary, a linguist

W(e→ t)

see • ⟨s, cats⟩
= ⟨sees, cats⟩

We→ W(e→ t)

λW.see •W

e→ e→ t

see

saw

We

⟨s, cats⟩
Sassy, a cat•

W(St)

. . .

Se

{x | lingx}
a linguist

W(e→ t)

see • ⟨s, cats⟩
= ⟨sees, cats⟩

We→ W(e→ t)

λW.see •W

e→ e→ t

see

saw

We

⟨s, cats⟩
Sassy, a cat•

32

The variable-full semanticist’s POV

The variable-free semanticist has a compelling case for higher-order structure. Does

the variable-full semanticist?

We think so. Not to handle multiple pronouns. An assignment is big enough for

that already. But possibly to value variables of different types:2

4. And [buy the couch]1 she2 did t1︸ ︷︷ ︸
λg.λh.g1h2

.

Yet it seems likely that variable-full semanticists would also wish to derive a

regular, non-higher-order meaning for she0 saw her1.

Functors and fmap alone can never do that.

But other, related constructs will get the job done. Stick around.

2 I’ve argued (Charlow 2019) that this yields a natural account of paycheck pronouns.
33

Type-driven (effectful) composition in Haskell

34

Some disanalogies between programming lgs and natural lgs

Unlike Haskell syntax, natural language syntax is ambiguous:

5. I saw the kestrel with the binoculars.

Even fixing a syntactic structure, ambiguity remains:

6. A doctor examined every patient.

7. Put a chicken in every pot.

8. Send a message to every VP.

And sometimes disappears:

9. I know a doctor who examined every patient.

10. A doctor examined every patient. She was quite busy.

35

Where do meanings come from?

So far, we’ve seen that Haskell is a pretty apt metalanguage for natural language.

But we haven’t seen how these meanings could be generated in the first place.

When writing Haskell, the compiler knows, in a type-directed way, which • is

intended, but it will not insert it (or LIFT’s) for you.

These issues (and those on the previous slide) are all problems of structuring

unstructured input, i.e., parsing. We cannot entirely rely on Haskell’s parsing and

type inference facilities, but we can build on them.

36

Representing syntactic objects (constituency only)

data Syn = Leaf String

| Branch Syn Syn

s1 :: Syn

s1 = Branch -- S

(Branch -- DP

(Leaf "the") -- D

(Branch -- NP

(Branch -- AdjP

(Leaf "very") -- Adv

(Leaf "big")) -- Adj

(Leaf "cat"))) -- N

(Leaf "left") -- VP

S

DP

D

the

NP

AdjP

Adv

very

Adj

big

N

cat

VP

left

37

Encoding syntax and semantics

data Syn

= Leaf String

| Branch Syn Syn

data Sem

= Lex String

| Comp Mode Sem Sem

data Mode

= FA | BA

| PM -- etc

data Type

= E | T

| Type :-> Type

38

Type-driven combination

�A B� ::=

�A��B� if A :: σ→ τ, B :: σ fa

�B��A� if A :: σ, B :: σ→ τ ba

�A�∩ �B� if A,B :: σ→ t pm

. . . if

combine :: Type -> Type -> [(Mode, Type)]

combine l r =

[(FA, b) | a :-> b <- [l], a == r] ++

[(BA, b) | a :-> b <- [r], a == l] ++

[(PM, a :-> T) | a :-> T <- [l], b :-> T <- [r], a == b]

-- ...

39

Examples of type-driven composition

*TypeDriven> combine E (E :-> T)

[(BA, T)]

*TypeDriven> combine (E :-> T) (E :-> T)

[(PM, E :-> T)]

*TypeDriven> combine (E :-> T) T

[]

40

Syntax to semantics

The following implements the standard logic of recursive type-driven composition:

synsem :: Syn -> [(Sem, Type)]

synsem (Leaf w) = [(Lex w, ty) | ty <- lex w]

synsem (Branch l r) =

[(Comp op lval rval, ty) | (lval, lty) <- synsem l

, (rval, rty) <- synsem r

, (op, ty) <- combine lty rty]

*TypeDriven> s0 = Branch (Leaf "ann") (Leaf "left")

*TypeDriven> synsem s0

(Comp BA (Lex "ann") (Lex "left"), T)

*TypeDriven> synsem s1

((Comp BA (Comp FA (Lex "the") (Comp PM (Comp FA (Lex "very")

(Lex "big")) (Lex "cat"))) (Lex "left")), T)

41

Syntax to semantics

The following implements the standard logic of recursive type-driven composition:

synsem :: Syn -> [(Sem, Type)]

synsem (Leaf w) = [(Lex w, ty) | ty <- lex w]

synsem (Branch l r) =

[(Comp op lval rval, ty) | (lval, lty) <- synsem l

, (rval, rty) <- synsem r

, (op, ty) <- combine lty rty]

*TypeDriven> s0 = Branch (Leaf "ann") (Leaf "left")

*TypeDriven> synsem s0

(Comp BA (Lex "ann") (Lex "left"), T)

*TypeDriven> synsem s1

((Comp BA (Comp FA (Lex "the") (Comp PM (Comp FA (Lex "very")

(Lex "big")) (Lex "cat"))) (Lex "left")), T)

41

Semantic values as (syntax-homomorphic) trees

*TypeDriven> semTrees s0

t

<

e

Lex

"ann"

e -> t

Lex

"left"

*TypeDriven> semTrees s1

t

<

e

>

(e -> t) -> e

Lex

"the"

e -> t

PM

e -> t

>

(e -> t) -> e -> t

Lex

"very"

e -> t

Lex

"big"

e -> t

Lex

"cat"

e -> t

Lex

"left"

42

Semantic values as (syntax-homomorphic) trees

*TypeDriven> semTrees s0

t

<

e

Lex

"ann"

e -> t

Lex

"left"

*TypeDriven> semTrees s1

t

<

e

>

(e -> t) -> e

Lex

"the"

e -> t

PM

e -> t

>

(e -> t) -> e -> t

Lex

"very"

e -> t

Lex

"big"

e -> t

Lex

"cat"

e -> t

Lex

"left"

42

With some term normalization

left (the (\z -> and (very big z) (cat z))) : t

<

the (\z -> and (very big z) (cat z)) : e

>

the : (e -> t) -> e

Lex

"the"

(\z -> and (very big z) (cat z)) : e -> t

PM

very big : e -> t

>

very : (e -> t) -> e -> t

Lex

"very"

big : e -> t

Lex

"big"

cat : e -> t

Lex

"cat"

left : e -> t

Lex

"left"

43

Natural deduction

*TypeDriven> semProofs s0

ann left ⊢ left ann : t
<

ann ⊢ ann : e left ⊢ left : e -> t

*TypeDriven> semProofs s1

the very big cat left ⊢ left (the (\z -> and (very big z) (cat z))) : t
<

the very big cat ⊢ the (\z -> and (very big z) (cat z)) : e
>

the ⊢ the : (e -> t) -> e very big cat ⊢ (\z -> and (very big z) (cat z)) : e -> t

PM

very big ⊢ very big : e -> t
>

very ⊢ very : (e -> t) -> e -> t big ⊢ big : e -> t

cat ⊢ cat : e -> t

left ⊢ left : e -> t

44

Adding effectful things to the grammar

Regular types extended with effect-ful types:

data Type = E | T

| Type :-> Type

| Eff F Type

Some notions of effects to get us going

data F = R

| S

| W

| C

-- ...

Then extending our type-driven interpreter just amounts to extending combine!

45

Extending combine with functors

Functorial F ’s don’t disrupt whatever your semantics can already do:

if a · b ⇒

(f ,

c

)

, then

 F a · b ⇒

(↑Rf lr := (
a→c︷ ︸︸ ︷

λl ′.f l′ r) • l ,

F c

)

a · F b ⇒

(↑Lf lr := (λr ′.f lr ′︸ ︷︷ ︸
b→c

) • r ,

F c

)

Ported directly to Haskell:

combine' :: Type -> Type -> [(Mode, Type)]

combine' l r = combine l r ++

[(LR op, Eff f c) | Eff f a <- [l]

, functor f, (op, c) <- combine' a r] ++

[(LL op, Eff f c) | Eff f b <- [r]

, functor f, (op, c) <- combine' l b]

This technique was developed by Barker & Shan 2014, White et al. 2017 for parsing with continuations.

But continuations are functorial, and the technique works for any functor!

46

Extending combine with functors

Functorial F ’s don’t disrupt whatever your semantics can already do:

if a · b ⇒ (f , c), then

 F a · b ⇒

(↑Rf lr := (
a→c︷ ︸︸ ︷

λl ′.f l′ r) • l ,

F c

)

a · F b ⇒

(↑Lf lr := (λr ′.f lr ′︸ ︷︷ ︸
b→c

) • r ,

F c

)

Ported directly to Haskell:

combine' :: Type -> Type -> [(Mode, Type)]

combine' l r = combine l r ++

[(LR op, Eff f c) | Eff f a <- [l]

, functor f, (op, c) <- combine' a r] ++

[(LL op, Eff f c) | Eff f b <- [r]

, functor f, (op, c) <- combine' l b]

This technique was developed by Barker & Shan 2014, White et al. 2017 for parsing with continuations.

But continuations are functorial, and the technique works for any functor!

46

Extending combine with functors

Functorial F ’s don’t disrupt whatever your semantics can already do:

if a · b ⇒ (f , c), then

 F a · b ⇒ (↑Rf lr := (
a→c︷ ︸︸ ︷

λl ′.f l′ r) • l , F c)
a · F b ⇒ (↑Lf lr := (λr ′.f lr ′︸ ︷︷ ︸

b→c

) • r , F c)

Ported directly to Haskell:

combine' :: Type -> Type -> [(Mode, Type)]

combine' l r = combine l r ++

[(LR op, Eff f c) | Eff f a <- [l]

, functor f, (op, c) <- combine' a r] ++

[(LL op, Eff f c) | Eff f b <- [r]

, functor f, (op, c) <- combine' l b]

This technique was developed by Barker & Shan 2014, White et al. 2017 for parsing with continuations.

But continuations are functorial, and the technique works for any functor!

46

Extending combine with functors

Functorial F ’s don’t disrupt whatever your semantics can already do:

if a · b ⇒ (f , c), then

 F a · b ⇒ (↑Rf lr := (
a→c︷ ︸︸ ︷

λl ′.f l′ r) • l , F c)
a · F b ⇒ (↑Lf lr := (λr ′.f lr ′︸ ︷︷ ︸

b→c

) • r , F c)

Ported directly to Haskell:

combine' :: Type -> Type -> [(Mode, Type)]

combine' l r = combine l r ++

[(LR op, Eff f c) | Eff f a <- [l]

, functor f, (op, c) <- combine' a r] ++

[(LL op, Eff f c) | Eff f b <- [r]

, functor f, (op, c) <- combine' l b]

This technique was developed by Barker & Shan 2014, White et al. 2017 for parsing with continuations.

But continuations are functorial, and the technique works for any functor!
46

She saw Ann

*TDParse> semTrees (parse [she, saw, ann])

fmap (saw ann) she : R t

↑R, <

she : R e

Lex

"she"

saw ann : e -> t

>

saw : e -> e -> t

Lex

"saw"

ann : e

Lex

"ann"

47

Ann saw her

*TDParse> semTrees (parse [ann, saw, her])

fmap (\a -> a ann) (fmap saw her) : R t

↑L, <

ann : e

Lex

"ann"

fmap saw her : R (e -> t)

↑L, >

saw : e -> e -> t

Lex

"saw"

her : R e

Lex

"her"

48

She saw her mom

*TDParse> semTrees (parse [she, saw, her, mom])

R (R t)

↑R, ↑L, <

R e

Lex

"she"

R (e -> t)

↑L, >

e -> e -> t

Lex

"saw"

R e

↑R, <

R e

Lex

"her"

e -> e

Lex

"mom"

R (R t)

↑L, ↑R, <

R e

Lex

"she"

R (e -> t)

↑L, >

e -> e -> t

Lex

"saw"

R e

↑R, <

R e

Lex

"her"

e -> e

Lex

"mom"

49

A mysterious third. . .

R t

Comb, <

R e

Lex

"she"

R (e -> t)

↑L, >

e -> e -> t

Lex

"saw"

R e

↑R, <

R e

Lex

"her"

e -> e

Lex

"mom"

50

Some combinations

For any functors F , G, if a · b ⇒ c, then:

a ·Gb ⇒ Gc

F a ·Gb ⇒ F (Gc)

The reverse direction works as well:

F a · b ⇒ F c

F a ·Gb ⇒ G(F c)

F and G may be the same, or different.

51

Pronouns and other effects

R (W t)

↑R, ↑L, <

R e

Lex

"she"

W (e -> t)

↑L, >

e -> e -> t

Lex

"saw"

W e

Lex

"Sassy, a cat"

W (R t)

↑L, ↑R, <

R e

Lex

"she"

W (e -> t)

↑L, >

e -> e -> t

Lex

"saw"

W e

Lex

"Sassy, a cat"

52

Adding in Z

Reminding ourselves of Jacobson’s Z rule for binding:

λx.f (mx)x : e→ b
Z

f : a→ e→ b m : Ra

Straightforwardly imported to combine (and generalized a bit):

combine' l r =

-- ... ++

[(Z op, E :-> d) | a :-> E :-> b <- [l]

, Eff R c <- [r]

, (op, d) <- combine' (a :-> b) c]

53

One Z-ful interpretation (of many)

R t

<

e

Lex

"ann"

e -> R t

Z, ↑L, >

t -> e -> t

Lex

"said"

R (R t)

↑L, ↑R, <

R e

Lex

"she"

R (e -> t)

↑L, >

e -> e -> t

Lex

"saw"

R e

↑R, <

R e

Lex

"her"

e -> e

Lex

"mom"

This would be hair-raisingly complex in the original VFS architecture.

54

Barker, Chris & Chung-chieh Shan. 2014. Continuations and natural language. Oxford: Oxford University Press.

https://doi.org/10.1093/acprof:oso/9780199575015.001.0001.

Charlow, Simon. 2019. A modular theory of pronouns and binding. Unpublished ms., Rutgers University.

https://ling.auf.net/lingbuzz/003720.

Heim, Irene & Angelika Kratzer. 1998. Semantics in generative grammar. Oxford: Blackwell.

Jacobson, Pauline. 1999. Towards a variable-free semantics. Linguistics and Philosophy 22(2). 117–184.

https://doi.org/10.1023/A:1005464228727.

White, Michael, Simon Charlow, Jordan Needle & Dylan Bumford. 2017. Parsing with dynamic continuized CCG. In

Proceedings of the 13th International Workshop on Tree Adjoining Grammars and Related Formalisms

(TAG+13), 71–83. Umeå, Sweden: Association for Computational Linguistics.

http://aclweb.org/anthology/W17-6208.

55

https://doi.org/10.1093/acprof:oso/9780199575015.001.0001
https://ling.auf.net/lingbuzz/003720
https://doi.org/10.1023/A:1005464228727
http://aclweb.org/anthology/W17-6208

	Recap, and a little category theory
	Functorial case study: variable-free semantics
	Type-driven (effectful) composition in Haskell
	References

