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Type-driven effectful composition
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Encoding syntax and semantics

data Syn

= Leaf String

| Branch Syn Syn

data Sem

= Lex String

| Comp Mode Sem Sem

data Mode

= FA | BA

| PM -- etc

data Type

= E | T

| Type :-> Type
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Type-driven combination at the interface

combine :: Type -> Type -> [(Mode, Type)]

combine l r =

[(FA, b) | a :-> b <- [l], a == r] ++

[(BA, b) | a :-> b <- [r], a == l] ++

[(PM, a :-> T) | a :-> T <- [l], b :-> T <- [r], a == b]

-- ...

synsem :: Syn -> [(Sem, Type)]

synsem (Leaf w) = [(Lex w, ty) | ty <- lex w]

synsem (Branch l r) =

[ (Comp op lval rval, ty) | (lval, lty) <- synsem l

, (rval, rty) <- synsem r

, (op, ty) <- combine lty rty ]
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Semantic values as (syntax-homomorphic) trees

*TypeDriven> semTrees s0

t

<

e

Lex

"ann"

e -> t

Lex

"left"

*TypeDriven> semTrees s1

t

<

e

>

(e -> t) -> e

Lex

"the"

e -> t

PM

e -> t

>

(e -> t) -> e -> t

Lex

"very"

e -> t

Lex

"big"

e -> t

Lex

"cat"

e -> t

Lex

"left"
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Adding effectful things to the grammar

Regular types extended with effect-ful types:

data Type = E | T

| Type :-> Type

| Eff F Type

Some notions of effects to get us going:

data F = R

| S

| W

| C

-- ...

Then extending our type-driven interpreter just amounts to extending combine!
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B

A

C

F(B)

F(A)

F(C)

g

f

g◦f

F(g)

F(f)

F(g◦f)
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Extending combine with functors

Functorial F ’s don’t disrupt whatever your semantics can already do:

if a · b ⇒

(f ,

c

)

, then

 F a · b ⇒

(↑Rf lr := (
a→c︷ ︸︸ ︷

λl ′.f l′ r) • l ,

F c

)

a · F b ⇒

(↑Lf lr := (λr ′.f lr ′︸ ︷︷ ︸
b→c

) • r ,

F c

)

Ported directly to Haskell:

combine' :: Type -> Type -> [(Mode, Type)]

combine' l r = combine l r ++

[ (LR op, Eff f c) | Eff f a <- [l]

, functor f, (op, c) <- combine' a r ] ++

[ (LL op, Eff f c) | Eff f b <- [r]

, functor f, (op, c) <- combine' l b ]

This technique was developed by Barker & Shan 2014, White et al. 2017 for parsing with continuations.

But continuations are functorial, and the technique works for any functor!
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She saw Ann

*TDParse> semTrees (parse [she, saw, ann])

fmap (saw ann) she : R t

↑R, <

she : R e

Lex

"she"

saw ann : e -> t

>

saw : e -> e -> t

Lex

"saw"

ann : e

Lex

"ann"
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Ann saw her

*TDParse> semTrees (parse [ann, saw, her])

fmap (\a -> a ann) (fmap saw her) : R t

↑L, <

ann : e

Lex

"ann"

fmap saw her : R (e -> t)

↑L, >

saw : e -> e -> t

Lex

"saw"

her : R e

Lex

"her"

10



She saw her mom

*TDParse> semTrees (parse [she, saw, her, mom])

R (R t)

↑R, ↑L, <

R e

Lex

"she"

R (e -> t)

↑L, >

e -> e -> t

Lex

"saw"

R e

↑R, <

R e

Lex

"her"

e -> e

Lex

"mom"

R (R t)

↑L, ↑R, <

R e

Lex

"she"

R (e -> t)

↑L, >

e -> e -> t

Lex

"saw"

R e

↑R, <

R e

Lex

"her"

e -> e

Lex

"mom"
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And some mysterious extras. . .

R t

A, <

R e

Lex

"she"

R (e -> t)

↑L, >

e -> e -> t

Lex

"saw"

R e

↑R, <

R e

Lex

"her"

e -> e

Lex

"mom"

R t

J, ↑R, ↑L, <

R e

Lex

"she"

R (e -> t)

↑L, >

e -> e -> t

Lex

"saw"

R e

↑R, <

R e

Lex

"her"

e -> e

Lex

"mom"

R t

J, ↑L, ↑R, <

R e

Lex

"she"

R (e -> t)

↑L, >

e -> e -> t

Lex

"saw"

R e

↑R, <

R e

Lex

"her"

e -> e

Lex

"mom"
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Some combinations

For any functors F , G, if a · b ⇒ c, then:

a ·Gb ⇒ Gc

F a ·Gb ⇒ F (Gc)

The reverse direction works as well:

F a · b ⇒ F c

F a ·Gb ⇒ G(F c)

F and G may be the same, or different.
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Pronouns and other effects

R (W t)

↑R, ↑L, <

R e

Lex

"she"

W (e -> t)

↑L, >

e -> e -> t

Lex

"saw"

W e

Lex

"Sassy, a cat"

W (R t)

↑L, ↑R, <

R e

Lex

"she"

W (e -> t)

↑L, >

e -> e -> t

Lex

"saw"

W e

Lex

"Sassy, a cat"
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Comments, questions, concerns addressed

Are occurrences of (•) actually instantiated in the syntax??

No, not necessarily

How is this practical? LIFT and (•) can apply iteratively.

combine-ation is recursive, but this recursion is pointed down the type

hierarchy, rather than up. Semantic parsing is decidable!

The system is unwieldy. Derivations are complex and difficult to construct.

Our semantic parses are homomorphic to the syntax that generates them.

Construction of derivations is automatic (but not complicated for humans).

What about PM, etc? How does (•) help us with, e.g., dog near her?

Let’s check. . .
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It just works!

*TDParse> semTrees $ parse [the, dog, with, her]

R e

↑L, >

(e -> t) -> e

Lex

"the"

R (e -> t)

↑L, PM

e -> t

Lex

"dog"

R (e -> t)

↑L, >

e -> e -> t

Lex

"with"

R e

Lex

"her"
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(You could have invented) Applicative Functors!
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Environment-dependence

Natural languages have free and bound pro-forms.

1. John saw her. I wouldn’t _ if I were you.

2. Everybodyi did theiri homework. When I’m supposed to worki I can’t _i.

It’s natural to think of the meanings of these pro-forms as living in a certain

Functor representing the effect of depending on (reading from) an environment

σ ::= e | t | σ → σ τ ::= Rσ ::= r→ σ

And that composition in the presence of such an effect can be managed by lifting

modes of composition on demand with fmap

18



The usual story: Heim & Kratzer (1998: 95):

This, however, is not quite the usual story. . .

In other words, the original argument-structure-driven modes of combination are

replaced with counterparts that share environments across constituents
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An environmental mode of combination

“Function Application”

If a node γ has two daughters

1. α of type R(σ→ τ), and

2. β of type Rσ,

then γ has type Rτ, and

�γ� := λr .�α�︸ ︷︷ ︸
R(b→c)

r (�β�︸ ︷︷ ︸
Rb

r)

︸ ︷︷ ︸
Rc

Rτ

λr .�β�r (�α�r)

γ

Rσ

�α�

α

R(σ→ τ)
�β�

β

Rτ

λr .�β�r (�α�r)

γ

R(σ→ τ)
�β�

β

Rσ

�α�

α

In any derivation with any pro-form, every expression will have to be made

environment-sensitive, a kind of generalization to the worst case
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Environment sharing in action

Rt

λr .sawr0 j

Re

λr . j

John

R(e→ t)

λr .sawr0

R(e→ e→ t)

λr .saw

saw

Re

λr .r0
her0

Rt

λr .knows(dadr1)(momr0)

Re

λr .momr0

Re

λr .r0
he0

R(e→ e)

λr .mom

’s mom

R(e→ t)

λr .knows(dadr1)

R(e→ e→ t)

λr .knows

knows

Re

λr .dadr1

Re

λr .r1
she1

R(e→ e)

λr .dad

’s dad

(Apply the result to a salient environment.)
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Pulling out what matters

Key features of the standard approach to environment-dependence:

Uniformity: everything depends on an environment (many things trivially).

Enriched composition: �·� stitches environment-relative meanings together.

Here’s another possibility: abstract out these key pieces, apply them on demand.

ηx := λr .x︸ ︷︷ ︸
cf. �John� := λr . j

m⊛n := λr .mr (nr)︸ ︷︷ ︸
cf. �α β� := λr .�α�r (�β�r)

In terms of types, η :: a→ Ra, and ⊛ :: R(a→ b)→ Ra→ Rb.
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A couple examples

λr .spoker0
Rt

λr .r0
Re

she0

λn.λr .spoke(nr)

Re→ Rt

λr .spoke

R(e→ t)

spoke

e→ t

spoke

⊛

η

λr .knowsr1 r0
Rt

λr .r0
Re

she0

λr .knowsr1 (mr)

Re→ Rt

λr .knowsr1
R(e→ t)

λm.λr .knows(mr)

Re→ R(e→ t)

λr .knows

R(e→ e→ t)

knows

e→ e→ t

knows

λr .r1
Re

her1

⊛

⊛

η
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Applicatives

R’s η and ⊛ make it an Applicative Functor (McBride & Paterson 2008, Kiselyov

2015). A type constructor F is applicative if it supports η and ⊛ with these types. . .

η :: a→ F a ⊛ :: F (a→ b)→ F a→ F b

. . . Where η is a trivial way to inject something into the richer type characterized by

F , and ⊛ is function application lifted into F . . .

Homomorphism Identity

ηf ⊛ ηx = η(f x) η(λx.x)⊛ v = v

Interchange Composition

η(λf .f x)⊛u = u⊛ ηx η(◦)⊛u⊛ v ⊛w = u⊛ (v ⊛w)
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Interchange Composition

η(λf .f x)⊛u = u⊛ ηx η(◦)⊛u⊛ v ⊛w = u⊛ (v ⊛w)

24



Applicatives in Haskell

class Functor f where

fmap :: (a -> b) -> f a -> f b

class Functor f => Applicative f where

pure :: a -> f a

(<*>) :: f (a -> b) -> f a -> f b

The compiler will ensure that the operations you provide are appropriately typed,

but it’s your job to make sure they’re well-behaved.
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Nondeterminism1

It’s common to treat question meanings as sets of possible answers:

3. Who ate the ham? � {atehx | x ∈ human} :: St

4. Who ate what? �
{
ateyx | x ∈ human, y ∈ thing

}
:: St

Naturally handled using another applicative functor, for sets::

ηx :=
{
x
}︸ ︷︷ ︸

η ::a→Sa

m⊛n :=
{
f x | f ∈m, x ∈ n

}︸ ︷︷ ︸
⊛ ::S(a→b)→Sa→Sb

Nondeterministic meanings also evident in:

5. You may eat an apple or a pear. î You may eat an apple.

Mail the letter. ̸î Mail or burn the letter.

6. Take a card. Place it on the bottom of the deck.

1 Cf. Hamblin 1973, Shan 2001, Charlow 2014, 2020.
26



Sample derivation, compared with environment-sensitivity

{knowsxy | y ∈ ling, x ∈ phil}
St

{y | y ∈ ling}
Se

which ling

λm.{knowsxy | y ∈m,x ∈ phil}
Se→ St

{knowsx | x ∈ phil}
S(e→ t)

λm.{knowsx | x ∈m}
Se→ S(e→ t)

{knows}
S(e→ e→ t)

knows

e→ e→ t

knows

{x | x ∈ phil}
Se

which phil

⊛

⊛

η

λr .knowsr1 r0
Rt

λr .r0
Re

she0

λr .knowsr1 (mr)

Re→ Rt

λr .knowsr1
R(e→ t)

λm.λr .knows(mr)

Re→ R(e→ t)

λr .knows

R(e→ e→ t)

knows

e→ e→ t

knows

λr .r1
Re

her1

⊛

⊛

η
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Supplementation2

Some expressions contribute information in a secondary “not-at-issue” register:

7. Joe, a linguist, lectured. � (lecturedj, [lingj]) :: Wt

8. Joe, a linguist, knows Mary, a philosopher. � (knowsmj, [lingj,philm]) :: Wt

9. Polly hasn’t read W&P, which is a classic. � (¬readw&pp, [classicw&p]) :: Wt

Another example of an applicative functor, for supplements:

ηx := (x, [])︸ ︷︷ ︸
η ::a→Wa

(f , l)⊛ (x, r) := (f x, l++r)︸ ︷︷ ︸
⊛ ::W(a→b)→Wa→Wb

In fact, pairs are applicative whenever the second element is monoidal. Why?

2 Cf. Potts (2005), Giorgolo & Asudeh (2012), and AnderBois, Brasoveanu & Henderson (2015).
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Sample derivation: Supplementation

(knowsmj, [philm, lingj])

Wt

(j, [lingj])

We

John, a linguist

λ(x, r).(knowsmx, [philm]++r)
We→ Wt

(knowsm, [philm])

W(e→ t)

λ(x, r).(knowsx, []++r)
We→ W(e→ t)

(knows, [])

W(e→ e→ t)

knows

e→ e→ t

knows

(m, [philm])

We

Mary, a philosopher

⊛

⊛

η
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Intonational focus

Contrastive focus invokes alternatives to what was said:

10. I only introduced {Jennifer, JENNIFER} to {Bill, BILL}.

11. Who did you introduce Jennifer to?

I introduced Jennifer (not JENNIFER) to BILL (not Bill).

Here, Fa ::= a× Sa, with the following applicative operations (Rooth 1985):

ηx := (x, {x}) (f , S)⊛ (x, T) := (f x, {s t | s ∈ S, t ∈ T})

Using this applicative, we can derive the following meanings:

12. I introduced JENNIFER to Bill. � {introxbi | x ∈ altj}

13. I introduced Jennifer to BILL. � {introjy i | y ∈ altb}

14. I introduced JENNIFER to BILL. � {introxy i | x ∈ altj, y ∈ altb}
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Scope and continuations

Languages have quantificational expressions, and they take scope:

15. Every lecturer presented in a room on the third floor.

�∀(λx.∃(λy.presyx))

� ∃(λy.∀(λx.presyx))

The relevant enrichment handles expressions with a scope (continuation):3

Ca ::= (a→ t)→ t ∀,∃ :: Ce = (e→ t)→ t

Yet another example of an applicative functor, for scope (continuations):

ηx := λk.kx m⊛n := λk.m(λf .n(λx.k(f x)))

3 Shan (2001), Barker (2002), Shan & Barker (2006), Barker & Shan (2008, 2014), and Charlow (2014).
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Sample derivation: Scope

λk.∀x.k(spokex)

Ct

λk.∀x.kx
Ce

everyone

λn.λk.n(λx.kspokex)

Ce→ Ct

λk.kspoke

C(e→ t)

spoke

e→ t

spoke

⊛

η
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Scope alternations via flexibility in ⊛

The Continuations applicative is non-commutative in that it admits two ⊛’s which

evaluate their arguments in opposite orders.

ηx := λk.kx

m⊛n := λk.m(λf .n(λx.k(f x)))︸ ︷︷ ︸
function-first

m⊛n := λk.n(λx.m(λf .k(f x)))︸ ︷︷ ︸
argument-first
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A couple examples

λk.∀y.∃x.k(sawxy)

Ct

λk.∀y.ky
Ce

everyone

λm.λk.m(λy.∃x.k(sawxy))

Ce→ Ct

λk.∃x.k(sawx)

C(e→ t)

λn.λk.n(λx.k(sawx))

Ce→ C(e→ t)

λk.ksaw

C(e→ e→ t)

saw

e→ e→ t

saw

λk.∃x.kx
Ce

someone

⊛

⊛

η

λk.∃x.∀y.k(sawxy)

Ct

λk.∀y.ky
Ce

everyone

λm.λk.∃x.m(λy.k(sawxy))

Ce→ Ct

λk.∃x.k(sawx)

C(e→ t)

λn.λk.n(λx.k(sawx))

Ce→ C(e→ t)

λk.ksaw

C(e→ e→ t)

saw

e→ e→ t

saw

λk.∃x.kx
Ce

someone

⊛

⊛

η
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Corresponding notions in programming

Pronouns and pronominal binding

Questions/‘inquisitive’ meanings

Focus

Presupposition

Supplemental content

Quantification

Variable management

Nondeterministic computation

Cellular automata

Throwing and catching errors

Logging/execution traces

Control flow (jumps, aborts, loops)
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Reading and Writing: A case study in composition

36



Simultaneous applicative effects

How to combine expressions from different applicative effect regimes?

?

(j, [lingj])

We

John, a linguist

λr .sawr0
R (e →t)

saw her

Let’s not hand-roll new modes of combination for every combination of effects!
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Applicative functors compose, too!

η(ηx) :: F (Ga)

Ga

x :: a

η

η

(η⊛)⊛m⊛n :: F (Gb)

F (Ga)→ F (Gb)

F (Ga→Gb)

m :: F (G(a→ b)) F (G(a→ b))→ F (Ga→Gb)

F (G(a→ b)→Ga→Gb)

⊛
G(a→ b)→Ga→Gb

n :: F (Ga)

⊛

⊛

η
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Ross Paterson’s Data.Functor.Compose (on Hackage)

module Data.Functor.Compose (

Compose(..),

) where

newtype Compose f g a = Compose { getCompose :: f (g a) }

instance (Applicative f, Applicative g) =>

Applicative (Compose f g) where

pure x = Compose (pure (pure x))

Compose f <*> Compose x = Compose ((<*>) <$> f <*> x)

39
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Composition with composition

Here’s what we get for the composition of R and W, (R ◦ W)a = r→ (a, [t]):

ηx := λr .(x, [ ]) m⊛n := λr .(f x, j++k) where (f , j) :=mr

(x, k) := nr

λr.(sawr0 j, [lingj])

λr .(j, [lingj])

(R ◦ W)e
John, a linguist

λr .(sawr0, [ ])

(R ◦ W)(e→ t)

saw her

R ◦ W also implies ways to lift Ra and Wa into (R ◦ W)a. Exercise: find them!
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Some more composed applicatives4

Whenever F and G are applicative, F ◦G is too. Here, for R ◦ S:

ηx := λr .{x} m⊛n := λr .
{
f x | f ∈mr,x ∈ nr

}
= η(ηx) = (η⊛)⊛m⊛n

And here, for S ◦ R:

ηx := {λr .x} m⊛n :=
{
λr .f r (xr) | f ∈m,x ∈ n

}
= η(ηx) = (η⊛)⊛m⊛n

4 Cf. Rooth (1985), Kratzer & Shimoyama (2002), Romero & Novel (2013), and Charlow (2020).
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Reading what’s been written

You might think that with the capacity to both push and pull things from a context,

we ought to be able to capture some kinds of anaphora.

16. Polly︸ ︷︷ ︸
Write

walked in the park. She︸ ︷︷ ︸
Read

whistled.
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Composing reading and writing actions

The reader/writer composition, with an entity-log:

(R ◦ W)a ::= r→ (a, [e])

And the corresponding η and ⊛ operations again:

ηx := λr .(x, [ ]) m⊛n := λr .(f x, j++k) where (f , j) :=mr

(x, k) := nr

Not quite what we’re after: the modified state output by m is not passed in to n.
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Failure to communicate

λr .(and(whistler0)(walkp), [p])

λr .(walkp, [p])

Polly walked

λm.λr .(and(whistler0)(mr)0, (mr)1)

λr .(and(whistler0), [ ])

λn.λr .(and(nr)0, (nr)1)

λr .(and, [ ])

and

λr .(whistler0, [ ])

she whistled

⊛

⊛

η

The pronoun Reads and the proper name Writes, but they don’t coordinate.

44



Another method of effect composition

But this nevertheless seems like the right structure to manage this sort of effect,

and in fact, there is a second applicative for this type.

The State applicative: STa ::= s→ (a,s)

ηx := λs.(x, s) m⊛n := λs.(f x, s′′) where (f , s′) =ms

(x, s′′) = ns′

ηx = λr .(x, [ ]) m⊛n = λr .(f x, j++k) where (f , j) :=mr

(x, k) := nr

Crucially, the modified state s′ is passed into n.
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Successful communication

λs.(and(whistlep)(walkp), [p]++s)

λs.(walkp, [p]++s)

Polly walked

λn.λs.(and(whistle(s′0)q, s′), where (q, s′) := ns

λs.(and(whistles0), s)

λn.λs.(and(ns)0, (ns)1)

λs.(and, s)

and

λs.(whistles0, s)

she whistled

⊛

⊛

η

The proper name Writes something the pronoun Reads.
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Indefinites, interleaving another effect

Indefinites combine reading and writing with nondeterminism:5

17. Polly walked in the park. She whistled.

18. A linguist walked in the park. She whistled.

s Polly witp [p]++s s a linguist witp

[e]++s

[d]++s

[c]++s

[b]++s

[a]++s

The nondeterministic state applicative, Da ::= s→ S(a× s):

ηx := λs.{(x, s)} m⊛n := λs.{(f x, s′′) | (f , s′) ∈ms, (x, s′′) ∈ ns′}

5 Heim (1982), Barwise (1987), Rooth (1987), Groenendijk & Stokhof (1991), and Muskens (1996), etc.
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Semantic parsing with applicatives

48



There is almost nothing more to say
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Extending combine with applicatives

if a · b ⇒

(f ,

c

)

, then


F a · b ⇒

(↑Rf lr := (λl ′.f l′ r) • l ,

F c

)

a · F b ⇒

(↑Lf lr := (λr ′.f lr ′) • r ,

F c

)

F a · F b ⇒

(A f lr := f • l⊛ r ,

F c

)

Ported directly to Haskell, again:

combine' :: Type -> Type -> [(Mode, Type)]

combine' l r = combine l r ++

[ (LR op, Eff f c) | Eff f a <- [l]

, functor f, (op, c) <- combine' a r ] ++

[ (LL op, Eff f c) | Eff f b <- [r]

, functor f, (op, c) <- combine' l b ] ++

[ (A op, Eff f c) | Eff f a <- [l], Eff g b <- [r], f == g

, applicative f, (op, c) <- combine' l b ]
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Deriving regular-order meanings using A

C t

A, <

C e

Lex

"someone"

C (e -> t)

↑L, >

e -> e -> t

Lex

"saw"

C e

Lex

"everyone"

R t

A, <

R e

Lex

"she"

R (e -> t)

↑L, >

e -> e -> t

Lex

"saw"

R e

Lex

"her"
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Composition of applicatives

R (C t)

A, A , <

R (C t)

↑L, ↑R, <

C e

Lex

"someone"

R (e -> t)

↑L, >

e -> e -> t

Lex

"saw"

R e

Lex

"her"

R (C (t -> t))

↑L, ↑L, >

t -> t -> t

Lex

"and"

R (C t)

↑L, ↑R, <

C e

Lex

"someone"

R (e -> t)

↑L, >

e -> e -> t

Lex

"saw"

R e

Lex

"her"
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A few words on continuations

Two types of A’s entertained earlier for C: function- or

argument-first. What happens here?

If a · b ⇒ (f , c), F a · F b ⇒ (Af lr := f • l⊛ r)

For C (with function-first ⊛) this gives l≫ r . There’s

systematic linear bias in composition!

Af lr �
C
λk.l(λl′.r (λr ′.f l′ r ′))

C t

A, <

C e

Lex

"someone"

C (e -> t)

↑L, >

e -> e -> t

Lex

"saw"

C e

Lex

"everyone"

What about inverse scope? It arises in higher-order (functorial) derivations. These:

May be dispreferred relative to regular order (cf. Partee & Rooth 1983)

Can certainly be distinguished from regular order; beneficial for xover etc

Shan & Barker 2006, Barker & Shan 2008, 2014, Bumford & Charlow 2022
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Future work

Ultimately, we are hand-rolling much of what the Haskell compiler already does so

well (and in a less type-safe way). It would be preferable to not re-invent the wheel.

There are inefficiencies in the naive version of applicative parsing sketched here.

Partially remedied w/a notion of normal form derivations (White et al. 2017).

Neural parsing achieves state-of-the-art accuracy and speed without dynamic

programming (Lee, Lewis & Zettlemoyer 2016). Something else to try.
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