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Applicatives

F is applicative if it supports η and ç with these types. . .

η : a→ F a ç : F (a→ b)→ F a→ F b

. . . Where η is a trivial way to inject something into the richer type characterized by

F , and ç is function application lifted into F .

McBride & Paterson 2008, Kiselyov 2015, Charlow 2019.
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Three applicatives

Sa ::= {a}

ηx := {x}

mçn :=
{
f x | f ∈m,x ∈ n

}
Ra ::= g→ a

ηx := λgx

mçn := λgmg(ng)

Wa ::= a× t

ηx := (a,T)

(f ,p)ç (x, q) := (f x,p ∧ q)
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Derivations: a linguist spoke/she0 spoke/Roger, a linguist, spoke

St{
spokex | x ∈ ling

}

Se{
x | x ∈ ling

} Se→ St

λn.{spokex | x ∈ n}

S(e→ t)

{spoke}

e→ t

spoke

ç

η

Rt

λg spokeg0

Re

λg g0

Re→ Rt

λn.λg spoke(ng)

R(e→ t)

λg spoke

e→ t

spoke

ç

η

Wt

(spoker, lingr)

We

(r, lingr)

We→ Wt

λ(x, q).(spokex,q)

W(e→ t)

(spoke,T)

e→ t

spoke

ç

η
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Monads
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Indefinites and pronouns

Indefinite noun phrases can host pronouns:

1. Mary submitted a paper she wrote

Given what we have said so far, the type of a pronoun-harboring indefinite should

include at least a Reading effect and a Set effect:

RSe = r→ {e} SRe = {r→ e}

With a little thought, you can convince yourself that only one of these makes any

sense

�a paper she0 wrote� =

λg
{
x | paperx,writexg0

}
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Indefinites and binding

Indefinite noun phrases can also bind pronouns

2. A linguist submitted a paper she wrote.

Intuitively, (2) is ambiguous between these two meanings:

3. a. λg
{
submityx | lingx,papery,wroteyx

}︸ ︷︷ ︸
RSt

b. λg
{
submityx | lingx,papery,wroteyg0

}︸ ︷︷ ︸
RSt

How can these meanings be composed?
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Modifying environments

Remember that we are treating pronouns as triggering a Read effect on the

environment

So to accomplish the “bound” reading of (2), we need some mechanism to allow

expressions to modify the environment that other expressions are evaluated in:

.n := λmλx(λgmgn→x)ç ηx

Note that this operation is Effect-polymorphic; it will work for any composition of

Functors beginning with R

.n :: R(e→ σ)→ e→ Rσ

.n :: RS(e→ σ)→ e→ RSσ

.n :: RW(e→ σ)→ e→ RWσ

.n :: RWS(e→ σ)→ e→ RSWσ

. . . . . .
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. . . binding . . .

Rt

λg deposited(paycheckg0→m
0 )m

e

Mary

e→ Rt

λx(λg · · · g0→x)ç ηx
= λxλg deposit(paycheckg0→x0 )x

.0 R(e→ t)

λg deposit(paycheckg0)

Re→ R(e→ t)

R(e→ e→ t)

e→ e→ t

deposited

Re

λg paycheckg0
her0 paycheck

ç

η
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. . . binding into indefinites

RSt

λg
{
subym | papery,writeyg0→m

0

}

e

Mary

e→ RSt

λx(λg · · · g0→x)ç ηx
= λxλg

{
subyx | papery,writeyg0→x0

}

RS(e→ t)→ RSe→ RSt

.0

RS(e→ t)

λg {suby | papery,writeyg0}

RSe→ RS(e→ t)

RS(e→ e→ t)

e→ e→ t

submitted

RSe

λg {subx | paperx,writexg0}
a paper she0 wrote

ç

η
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Indefinites binding into indefinites

RSt

???

RSe

λg {x | lingx}
a linguist

e→ RSt

λxλg
{
subyx | papery,writeyg0→x0

}

RS(e→ t)→ RSe→ RSt

.0

RS(e→ t)

λg {suby | papery,writeyg0}

RSe→ RS(e→ t)

RS(e→ e→ t)

e→ e→ t

submitted

RSe

λg {subx | paperx,writexg0}
a paper she0 wrote

ç

η
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Getting closer

RSt

λg
{
subyx | lingx,papery,wroteyx

}

RSRSt

λg
{
λh {subyx | papery,wroteyh0→x0 } | lingx

}

RSe

λg {x | lingx}
a linguist

RSe→ RSRSt

λE (λxλh {subyx | papery,writeyh0→x0 }) • E
= λEλg {λh {subyx | papery,writeyh0→x0 } | x ∈ Eg}

e→ RSt

λxλh
{
subyx | papery,writeyh0→x0

}

submitted a paper she wrote

???

•

The meaning we can get has two layers of independent RS structure

But to get the meaning we want, we’ll need a way to flatten them somehow

µ :: RSRSa→ RSa
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R flattener

Let’s warm up by finding a function with the following type:

µ :: RRa→ Ra

The obvious candidate duplicates an assignment:

µM := λgMgg
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S flattener

Let’s warm up by finding a function with the following type:

µ :: SSa→ Sa

The obvious candidate takes the grand union:

µM :=
⋃
M

= {a |m ∈ M,a ∈m}
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RS flattener

So can we define a flattener function for RS?

µ :: RSRSa→ RSa

The obvious candidate mixes R’s and S’s µ operations:

µM := λg
⋃{
mg |m ∈ Mg

}
= λg

{
a |m ∈ Mg,a ∈mg

}
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Flattening in action

RSt

RSRSt

λg
{
λh {subyx | papery,writeyh0→x0 } | lingx

}

RSe

a linguist

RSe→ RSRSt

e→ RSt

submitted a paper she wrote

µ

•

µ(λg
{
λh
{
. . . h0→x0 . . .

}
| lingx

}
) = λg

{
a |m ∈ (λg

{
λh
{
. . . h0→x0 . . .

}
| lingx

}
)g, a ∈mg

}
= λg

{
a |m ∈

{
λh
{
. . . h0→x0 . . .

}
| lingx

}
, a ∈mg

}
= λg

{
a | lingx, a ∈ (λh

{
. . . h0→x0 . . .

}
)g
}

= λg
{
a | lingx, a ∈

{
. . . g0→x0 . . .

}}
= λg

{
submityx | lingx,papery,wroteyx

}
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More on µ

µM := λg
⋃

m∈Mg
mg

= λg
{
a |m ∈ Mg, a ∈mg

}
This µ was cooked specifically to make composition possible in this particular

structure

A natural question to ask is how specific it is to the task at hand, centered around a

particular derivation of binding
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Relating µ to η

The grammars we’ve considered so far are built from functorial operations: η, •, ç

One thing we can readily observe is that for all of R, S, and RS, lifting a value with η

and then lowering the result wit µ is a no-op

µR (ηRφ) = µR (λgφ)

= λg (λgφ)gg

= λgφg

= φ

µS (ηSφ) = µS {φ}

=
⋃
{φ}

= {x | x ∈ φ}

= φ

µRS (ηRSφ) = µRS (λg {φ})

= λg
⋃
{mg |m ∈ (λg {φ})g}

= λg
⋃
{mg |m ∈ {φ}}

= λg
⋃
{φg}

= λgφg

= φ
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Relating µ to •: R

Even more to the point, given any higher-order structure, it doesn’t matter whether

we flatten the outer structure first or the inner one

λiλj λk . . . i . . . j . . . k . . .︸ ︷︷ ︸
µR

λhλk . . . h . . . h . . . k . . .︸ ︷︷ ︸
µR

λg . . . g . . . g . . . g . . .

λiλj λk . . . i . . . j . . . k . . .︸ ︷︷ ︸
µR

λiλk . . . i . . . k . . . k . . .︸ ︷︷ ︸
µR

λg . . . g . . . g . . . g . . .
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Relating µ to •: S

Even more to the point, given any higher-order structure, it doesn’t matter whether

we flatten the outer structure first or the inner one

{{{. . .}, . . .}, {{. . .}, . . .}, . . .}︸ ︷︷ ︸
µS

{m′ |m ∈ {. . .},m′ ∈m}︸ ︷︷ ︸
µS

{a |m ∈ {. . .},m′ ∈m,a ∈m′}

{{{. . .}, . . .}︸ ︷︷ ︸
µS

, {{. . .}, . . .}︸ ︷︷ ︸
µS

, . . .︸︷︷︸
µS

}

{{a |m′ ∈ {. . .}, a ∈m′}, {a |m′ ∈ {. . .}, a ∈m′}, . . .}︸ ︷︷ ︸
µS

{a |m ∈ {. . .},m′ ∈m,a ∈m′}
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Relating µ to •: RS

The same is true of RS, though it is a little more tedious to work out

µR (µRM) = µR (µR •M) = λgMggg

µS (µSM) = µS (µS •M) = {a |m ∈ M,m′ ∈m,a ∈m′}
µRS (µRSM) = µRS (µRS •M) = λg {a |m ∈ Mg,m′ ∈mg,a ∈m′g}

The set-flattening and environment-sharing are simply interleaved all the way down.
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Monads

Indeed, any functor for which there is a µ satisfying these equations is known as a

Monad
Left Identity µ(ηM) = M
Right Identity µ(η •M) = M
Associativity µ(µM) = µ(µ •M)

For historical reasons, in Haskell the η of a Monad is called its return, and the µ

called its join

return :: Monad f => a -> f a

join :: Monad f => f (f a) -> f a

23



Parser interlude

Again, stretching the parser is no more complicated than composing our existing

modes of combination with join

combine' :: Type -> Type -> [(Mode, Type)]

combine' l r = addJ $ combine l r ++

[ (LR op, Eff f c) | Eff f a <- [l]

, functor f, (op, c) <- combine' a r ] ++

[ (LL op, Eff f c) | Eff f b <- [r]

, functor f, (op, c) <- combine' l b ] ++

[ (A op, Eff f c) | Eff f a <- [l], Eff g b <- [r], f == g

, applicative f, (op, c) <- combine' l b ]

addJ :: [(Mode, Type)] -> [(Mode, Type)]

addJ e = e ++

[ (J op, Eff f a)

| (op, Eff f (Eff g a)) <- e

, monad f

, f == g ]
24



Refactoring to ?

It turns out, an equivalent way to state a monad uses ? and η in place of • and µ

• :: (α→ β)→ Fα→ Fβ η :: α→ Fα

µ :: FFα→ Fα ? :: Fα→ (α→ F β)→ F β

The Haskell name for ? is >>=, pronounced, tellingly, as bind

class Monad f where

return :: a -> f a

(>>=) :: f a -> (a -> f b) -> f b

The monad laws governing η and ? take the forms:

Left Identity ηa? k = ka
Right Identity m?η =m
Associativity (m? λana) ? o =m? (λana? o)
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Defining binds

The sense in which the • / µ construction and the η / ? construction are equivalent

is that they are interdefinable in a law-preserving way

µM =

M ? id

m?k = µ(k •m)

Let’s work out the ? (‘bind’) operations for R, S, and RS:

m?f := λg f (mg)g m? f :=
⋃
x∈m f x m? f := λg

⋃
x∈mg f xg

26
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Monads are Applicative

If we harmlessly swap the order of ?’s arguments, you can see an interesting

progression:

• :: (a→ b)→ Fa→ Fb

ç :: F(a→ b)→ Fa→ Fb

λkλmm?k :: (a→ Fb)→ Fa→ Fb

It’s not hard to see that ç can be defined in terms of ?:

ç :: F(a→ b)→ Fa→ Fb

F çA =

F ? λf A? λaη(f a)

And as long as ? satisfies the Monad laws, the ç defined above will be guaranteed

to satisfy the Applicative laws

So every Monad is an Applicative
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Monads are Functors

If we harmlessly swap the order of ?’s arguments, you can see an interesting

progression:

• :: (a→ b)→ Fa→ Fb

ç :: F(a→ b)→ Fa→ Fb

λkλmm?k :: (a→ Fb)→ Fa→ Fb

It’s not hard to see that • can be defined in terms of ?:

• :: (a→ b)→ Fa→ Fb

k •A =

A? λaη(ka)

And as long as ? satisfies the Monad laws, the ç defined above will be guaranteed

to satisfy the Functor laws

So every Monad is a Functor
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Compared

So in general, we have:

m?k = µ(k •m)

And given that also:

k •m = ηkçm

You can see the ? hiding in the chain of type shifts from our binding derivation:

RSt

RSRSt

RSe

a linguist

RSe→ RSRSt

RS(e→ RSt)

e→ RSt
...

...
...

µ

ç

η

RSt

(e→ RSt)→ RSt

RSe

a linguist

e→ RSt
...

...
...?
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How to use ?

Adding ? to the grammar isn’t as obviously immediately useful as adding • and ç
because functions of type (a→ Fb) don’t occur very naturally in the wild

And moreover, with just the combinators we have, there’s no way to pull an

(a→ Fb) out of an (a→ b)

St{
spokex | lingx

}

Se{
x | lingx

}
a linguist

Se→ St

λE {spokex | x ∈ E}

S(e→ t)

{spoke}
spoke

e→ t

spoke

ç

η

St{
spokex | lingx

}

(e→ St)→ St

λk
⋃{
kx | lingx

}

Se{
x | lingx

}
a linguist

e→ St

λx {spokex}
spoke

. . .

e→ t

spoke

?
. . .

. . .
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How to use ?

But the type signature of the ?-shifted subject might set alarm bells ringing if

you’re a linguist

St{
spokex | lingx

}

(e→ St)→ St

λk
⋃{
kx | lingx

}

Se{
x | lingx

}
a linguist

e→ St

λx {spokex}
spoke

. . .

e→ t

spoke

?
. . .

. . .

It looks an awful lot like good old lift-ing

lift :: e→ (e→ t)→ t

? :: Fe→ (e→ Ft)→ Ft
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? and scope

In fact, if your fancy individual is not actually fancy, then the first Monad law

Left Identity ηa? k = ka

just says that

(ηa)? = λkka = lifta

This makes you wonder if you can use any of the techniques invented to deal with

Generalized Quantifiers to facilitate composition

In particular, it calls for a theory of scope
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Scope via “Q”R

This might take the form of re-introducing raising and abstraction into the syntax:

St{
spokex | lingx

}

(e→ St)→ St

λk
⋃{
kx | lingx

}

Se{
x | lingx

}

e→ St

λx {spokex}

λx St

{spokex}

t

spokex

?

η

Rt

λg spokeg0

(e→ Rt)→ Rt

λkλg kg0g

Re

λg g0

e→ Rt

λx λg spokex

λx Rt

λg spokex

t

spokex

?

η

(These are guaranteed to deliver the same results as the derivations with ç)

33



Scope via C

Or alternatively, you might recall that scope-taking itself is a kind of effect

Ce ::= (e→ Ft)→ Ft

ηx = λkkx

mçn = λkm(λf n(λx k(f x)))

From this perspective, ? looks like a kind of Natural Transformation from one

effect to another

? :: Fa→ Ca

In which case, we should be able to use C’s ç to handle composition
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Scope via C in action

Ct

λk.�a log� ? (λy.�a ling� ? (λx.k(sawxy)))

= λk.
⋃{
k(sawxy) | lingx, logy

}

Ce

λk.�a log� ? k

Se

�a log�

a logician

Ce→ Ct

λm.λk.�a ling� ? (λx.m(λy.k(sawxy)))

C(e→ t)

λk.�a ling� ? (λx.k(sawx))

Ce→ C(e→ t)

λn.λk.n(λx.k(sawx))

C(e→ e→ t)

λk.ksaw

e→ e→ t

saw

saw

Ce

λk.�a ling� ? k

Se

�a ling�

a linguist

? ç

ç

η

?
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More Monads

As it happens, nearly all of the basic Functors we’ve introduced as case studies turn

out to be Monads

For instance,

data Maybe a = Just a | Nothing

instance Monad Maybe where

return a = Just a

join m = case m of

Just (Just a) -> a

_ -> Nothing

data Writer w a = Writer (a, w)

instance Monad (Writer [E]) where

return a = Writer (a, [])

join (Writer (Writer (a, xs), ys)) = Writer (a, xs ++ ys)
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Fewer Monads

At the same time, many of the Functors we’ve seen are not (obviously) Monads

WRα = 〈r→ α, [t]〉

ηa = . . .

〈f ,p〉? k = . . .

There’s no obvious way to define this even though W and R are themselves Monads

This means that while. . .

the composition of two Functors is a Functor

the composition of two Applicatives is an Applicative

A the composition of two Monads is not necesarrily a Monad
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Layer with caution

Notably, though RS is a monad (as we’ve seen), SR is (probably?) not!

RSα = r→ {a}

ηa = λg {a}

m?k = λg
⋃
{ka | a ∈mg}

SRα = {r→ a}

ηa = . . .

m ? k = . . .
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Distributive transformations

So how can you tell when a composition of Monads FG is a Monad? That is, how can

you know whether there is a (law-abiding) function

µFG :: FGFGα→ FGα

One thing to notice is that since F and G are Monads, we are guaranteed functions

µF :: FFα→ Fα

µG :: GGα→ Gα

If we just had a function

Υ :: GFα→ FGα,

then it seems like we’d be golden, since we could build the following pipeline:

µFG = FGFG -------→
Υ
FFGG ----------------------------→

µF
FGG ----------------------------→

µG
FG
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Distributing S over R

And indeed, for the composition RS, there’s a natural way to get home when the

effects are inverted
Υ :: SRα→ RSα

Υ = . . .

It is so natural in fact, it is called a Distributive Natural Transformation, which

means it satisfies these laws (and a few others)

Υ (ηR •S S) = ηR S

Υ (ηSR) = ηS •R R

f •RS ΥM = Υ (f •SR M)

As suspected, any time there is a Distributive Υ :: GF→ FG with these properties, you

can be sure FG is a Monad1

1 Beck 1969
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Distributing R over S

But for SR, we’d need to define a function in the opposite direction

Υ :: RSα→ SRα

Υ = . . .

It turns out that no such function can ever satisfy the Distributive laws2

2 Bumford 2022
41



Distributing R over S

But for SR, we’d need to define a function in the opposite direction

Υ :: RSα→ SRα

Υ = . . .

It turns out that no such function can ever satisfy the Distributive laws2

2 Bumford 2022
41



Dynamics
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Dynamic binding

4. Polly left. She was tired.

5. A linguist left. She was tired.

6. Every linguist left. ??She was tired.
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The basic idea3

g Pollyn left gn,p g a linguistn left

gn,e

gn,d

gn,c

gn,b

gn,a

Dref introduction is assignment modification.

Indefinites introduce drefs non-deterministically.

New drefs may (not) pan out downstream (cf. Stalnaker 1978).

3 Heim (1982), Barwise (1987), Groenendijk & Stokhof (1991), and Muskens (1996), etc.
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Dynamics

Consider this (standard, DPL-ish) dynamic system:

�∃x� := λg
{
gx,d | d ∈ D

}
�φ∧ψ� := λg

{
h ∈ k[ψ] | k ∈ g[φ]

}
Consider what ‘effects’ are embodied in this system (in what ways is it ‘richer’ than

the basic grammar we began with?).
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A dynamic monad

Can you devise an applicative type constructor F that does justice to these effects?

Can you devise a trivial way to ‘lift’ an a into an Da, and an ? recipe for composing

a a→ Db and an Da to give an Db?

RSa ::= g→ Sa

ηx := λg{x}

m?f := λg
⋃
x∈mg f xg

Da ::=

g→ S(a× g)

ηx :=

λg
{(
x,g

)}

m?f :=

λg
⋃
(x,h)∈mg f xh

Bonus food for thought: is D commutative? Does that seem important?
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Binding

Remember the binding operator defined earlier

.n :: R(e→ σ)→ e→ Rσ

.n := λmλx(λgmgn→x)ç ηx

With scope-taking in the grammar, we can make this a little simpler, since we can

build (e→ RFσ) functions directly[ˆbur]

.n := λfλx λg f xgn→x

Again, this operation is Effect-polymorphic; any Effect beginning with R, including

D ≡ RSW
.n :: (e→ Rσ)→ e→ Rσ

.n :: (e→ RSσ)→ e→ RSσ

.n :: (e→ RWσ)→ e→ RWσ

.n :: (e→ RSWσ)→ e→ RSWσ

. . . . . .
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Dynamic binding

In D, .-referents are stored for later

Dt

λg
{(

spokex,g0→x
)
| x ∈ ling

}

(e→ Dt)→ Dt

λf λg
⋃
x∈ling f xg

De

λg
{(
x,g

)
| x ∈ ling

}

e→ Dt

λx λg
{(

spokex,g0→x
)}

e→ Dt

λx λg
{(

spokex,g
)}

λx Dt

λg
{(

spokex,g
)}

t

spokex

? .0

η
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Associativity

For any monadic T , the Associativity law guarantees that the two derivations below

are equivalent. It’s as if m had scoped out of Tb , without actually doing so

T c

(b→ T c)→ T c

T b

(a→ T b)→ T b

m : T a

a→ T b

λx T b

... x : a ...

b→ T c

λy T c

... y : b ...

T c

(a→ T c)→ T c

m : T a

a→ T c

λx T c

(b→ T c)→ T c

T b

... x : a ...

b→ T c

λy T c

... y : b ...

?

?

?

?
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Dynamic binding via static conjunction

Dt = λg
{(

camex ∧ satx,g0→x
)
| x ∈ ling

}

(t→ Dt)→ Dt

Dt = λg
{(

camex,g0→x
)
| x ∈ ling

}

(e→ Dt)→ Dt

De

a.ling

e→ Dt

e→ Dt

λx Dt

t

camex

t→ Dt

λp Dt

(t→ Dt)→ Dt

Dt = λg
{(

satg0, g
)}

(e→ Dt)→ Dt

De

she0

e→ Dt

λy Dt

t

saty

t→ Dt

λq Dt

t

p ∧ q

?

? .0

η

?

?

η

η
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Reassociating

Associativity (m? λana) ? o =m? (λana? o)

( a.ling0 ? λx η(camex) ) ? λp ( she0 ? λy η(saty) ) ? λqη(p ∧ q)

a.ling0 ? λx ( η(camex) ? λp ( she0 ? λy η(saty) ) ? λqη(p ∧ q) )
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