Effectful composition in natural language semantics

From Applicatives to Monads

Simon Charlow (Rutgers) Dylan Bumford (UCLA)

ESSLLI 2022, NUI Galway

Recap

Applicatives

F is applicative if it supports n and ® with these types...
n:a—Fa ®:Fla—-b)—Fa—Fb

... Where n is a trivial way to inject something into the richer type characterized by

F, and @ is function application lifted into F.

McBride & Paterson 2008, Kiselyov 2015, Charlow 2019.

Three applicatives

Sa = {a} Raz=g—a
nx = {x} nx = Agx
men:={fx|femxecn} men :=Agmg(ng)
Wai=axt
nx = (a,T)

(fipe(x,q) = (fx,praq)

Derivations: a linguist spoke/she, spoke/Roger, a linguist, spoke

Se Re We

{x | x € ling} Ag90 (r,lingr)

e—t e—t e—t
spoke spoke spoke

Derivations: a linguist spoke/she, spoke/Roger, a linguist, spoke

Se
{x | x € ling}

S(e—1)
{spoke}

n

e—t
spoke

Re
Ag90

R(e—1t)
Agspoke

n

e—t
spoke

We
(r,lingr)

W(e—t)
(spoke, T)

n

e—t

spoke

Derivations: a linguist spoke/she, spoke/Roger, a linguist, spoke

Se Se—St Re Re - Rt We We - Wt
{x | x € ling} An.{spokex | x € n} Ag 9o An.Agyspoke(ng) (r,lingr) A(x,q).(spokex, q)
E o o
S(e—1) R(e —1t) W(e—t)
{spoke} Ag spoke (spoke, T)
[[m K
e—-t e—t e—t

spoke spoke spoke

Derivations: a linguist spoke/she, spoke/Roger, a linguist, spoke

St
{spokex | x € ling}

T

Se Se—St
{x|x e€ling} An.{spokex | x € n}
|0
S(e—1)
{spoke}
E
e—t
spoke

Rt
Agspoke go
/\
Re Re - Rt
Ag 90 An.Agspoke (ng)

|
R(e—1t)
Agspoke

|

e—t

spoke

Wt
(spoker, lingr)

N

We We —-Wt
(r,lingr) A(x,q).(spokex,q)

[©]

W(e—t)

(spoke, T)
|n
e—t

spoke

Monads

Indefinites and pronouns

Indefinite noun phrases can host pronouns:
1. Mary submitted a paper she wrote

Given what we have said so far, the type of a pronoun-harboring indefinite should
include at least a Reading effect and a Set effect:

RSe =r — {e} SRe = {r—e}
With a little thought, you can convince yourself that only one of these makes any

sense
[a paper shey wrote] =

Indefinites and pronouns

Indefinite noun phrases can host pronouns:
1. Mary submitted a paper she wrote

Given what we have said so far, the type of a pronoun-harboring indefinite should
include at least a Reading effect and a Set effect:

RSe =r — {e} SRe = {r—e}
With a little thought, you can convince yourself that only one of these makes any

sense
[a paper shey wrote] = Ag {x | paperx,writex go}

Indefinites and binding

Indefinite noun phrases can also bind pronouns
2. A linguist submitted a paper she wrote.
Intuitively, (2) is ambiguous between these two meanings:

3. a. Ag {submityx | lingx, papery,wrotey x}

RSt
b. Ay {submityx | lingx, papery,wrotey go}

RSt

How can these meanings be composed?

Modifying environments

Remember that we are treating pronouns as triggering a Read effect on the

environment

So to accomplish the “bound” reading of (2), we need some mechanism to allow

expressions to modify the environment that other expressions are evaluated in:

Dy = AmAx(Agmgt*) e nx

Note that this operation is Effect-polymorphic; it will work for any composition of

Functors beginning with R

Dy o
[
Dy o
Dy o

R(e—-0)—-e—Ro
RS(e —0) - e—RSo
RW(e - 0) — e - RWO
RWS (e — 0) — e = RSWo

. binding ...

Rt

/\

e e —-Rt
Mary

/\

>0 R(e—t)

/\

Re - R(e—t) Re
‘ ® Ag paycheck go
Re—e—t) hery paycheck
K
e—e—t
deposited

10

. binding ...

Rt

/\

e e —-Rt
Mary

/\

>0 R(e—t)
Ag deposit (paycheck go)

/\

Re - R(e—t) Re
‘® Ag paycheck go
Re—e—t) hery paycheck

K
e—e—t
deposited

10

. binding ...

Rt
e e — Rt
Mary Ax(Ag -+ g" ¥ enx
>0 R(e—1t)
Agdeposit (paycheck go)
Re - R(e—t) Re
‘ ® Ag paycheck go
R(e—e—t) hery paycheck
E
e—e—t

deposited

10

. binding ...

Rt
Agdeposited (paycheckgg*

/\

e e —-Rt

™) m

Mary Acg -+ g") enx
= AxAy deposit (paycheck g) x

/\

>0 R(e—t)
Ag deposit (paycheck go)

/\

Re - R(e—t) Re
‘ ® Ag paycheck go
Re—e—t) hery paycheck

K
e—e—t
deposited

10

. binding into indefinites

RSt
e e—RSt
Mary
RS(e — t) - RSe—~RSt RS (e — 1)
>0
RSe - RS(e—t) RSe
‘ ® Ag {subx | paperx,writex go}
RS(e - e - t) a paper shey wrote

E
e—e—t
submitted

. binding into indefinites

RSt

e e—RSt

Mary

RS(e — t) - RSe—~RSt RS (e — 1)

>0 Ag {suby | papery,writey go}
RSe - RS(e—t) RSe
‘ ® Ag {subx | paperx,writex go}

RS(e - e - t) a paper shey wrote

E
e—e—t
submitted

. binding into indefinites

RSt
e e—RSt
Mary Ax(Ag -+ g) enx
RS(e — t) - RSe—~RSt RS (e — 1)
>0 Ag {suby | papery,writey go}
RSe - RS(e—t) RSe
‘ ® Ag {subx | paperx,writex go}
RS(e - e - t) a paper shey wrote
E
e—-e—t

submitted

. binding into indefinites

RSt
Ag {subym | papery,writey g§~™}
e e—~RSt
Mary AxAg <o g9 ¥ enx
= AvAg {subyx | papery,writey g§~*|

/\

RS(e —1t) ~RSe ~ RSt RS (e — t)
o Ay {suby | papery,writey go}
/\
RSe — RS (e — t) RSe
‘ ® Ag {subx | paperx,writex go}
RS(e —e—t) a paper sheg wrote
E
e—e—t

submitted

Indefinites binding into indefinites

RSt
7?7
RSe e—RSt
Ag {x | lingx} Axdg {subyx | papery,writeyggax}
a linguist /\
RS(e - t) - RSe - RSt RS (e — t)
> Ag {suby | papery,writey go}
RSe - RS(e—t) RSe
‘ ® Ag {subx | paperx,writex go}
RS (e — e — 1) a paper shey wrote
E
e—-e—t

submitted

Getting closer

RSe
Agix | lingx}
a linguist

e—-RSt
AxAn {subyx | papery,writeyhg”x}

submitted a paper she wrote

Getting closer

RSe
Agix | lingx}
a linguist

RSe — RSRSt
A (AxAp {suby x | papery,writeyhg”x}) o E
=ApAg {Ap {suby x| papery,writeyhg”x} | x e Eg}

e—-RSt
AxAn {subyx | papery,writeyhg”x}

submitted a paper she wrote

Getting closer

RSRSt
Ag {Ah{subyx | papery,wroteyhg”} | Iingx}

/\

RSe RSe — RSRSt
Agix | lingx} A (AxAp {suby x | papery,writeyhg”x}) o E
a linguist =ApAg {Ap {suby x| papery,writeyhg”x} | x e Eg}
e—-RSt

AxAn {subyx | papery,writeyhg”x}

submitted a paper she wrote

Getting closer

RSt
Ag {subyx | lingx, papery,wrote y x}
‘???
RSRSt
Ag {Ah{subyx | papery,wroteyhg”x} | Iingx}

/\

RSe RSe — RSRSt
Agix | lingx} A (AxAp {suby x | papery,writeyhg”x}) o E
a linguist =ApAg {Ap {suby x| papery,writeyhg”x} | x e Eg}
e—-RSt

AxAn {subyx | papery,writeyhg”x}

submitted a paper she wrote

Getting closer

RSt
Ag {suby x | lingx, papery,wrote y x}
‘??.7
RSRSt
Ag {A;,,{subyx | papery,wroteyhg”x} | Iingx}

/\

RSe RSe — RSRSt
Agix | lingx} A (AxAp {suby x | papery,writeyhg”x}) o E
a linguist =ApAg {Ap {suby x | papery,writeyhg”x} | x e Eg}
e—-RSt

AxAp {subyx | papery,write y hg”"}

submitted a paper she wrote
The meaning we can get has two layers of independent RS structure

But to get the meaning we want, we’ll need a way to flatten them somehow

pRSRSa — RSa

R flattener

Let’s warm up by finding a function with the following type:

u:RRa - Ra

R flattener

Let’s warm up by finding a function with the following type:

u:RRa - Ra

The obvious candidate duplicates an assignment:

UM :=AgMgg

S flattener

Let’s warm up by finding a function with the following type:

uzSSa—-Sa

S flattener

Let’s warm up by finding a function with the following type:

uzSSa—-Sa

The obvious candidate takes the grand union:

uM =M

={a|lmeM,aem}

RS flattener

So can we define a flattener function for RS?

u:RSRSa —RSa

16

RS flattener

So can we define a flattener function for RS?

u:RSRSa —RSa

The obvious candidate mixes R’s and S’s u operations:

UM =24 | J{mg | me Mg}

=Agla|lmeMg,acmg}

16

Flattening in action

RSt
|
RSRSt
Ag {)\h {subyx | papery,writeyhg*"} | Iingx}

TN

RSe RSe — RSRSt
a linguist

e—RSt

submitted a paper she wrote
alme Ay {Ap{...hY™*...} | lingx}) g, a e mg}

alme{A{...hy"*...} | lingx}, a e mg}

Aq {
Aq {
=Ag{allingx, ae Ax{...h)™> ... g}
Ag{allingx, ae {...gd*...}}

Ag

g {submity x | lingx, papery,wrotey x}

More on u

uM:=2a4 |J mg
meMg

=Ag{almeMg, acmg}

This u was cooked specifically to make composition possible in this particular
structure

A natural question to ask is how specific it is to the task at hand, centered around a
particular derivation of binding

Relating p to n

The grammars we’ve considered so far are built from functorial operations: n, ¢, ®

One thing we can readily observe is that for all of R, S, and RS, lifting a value with n
and then lowering the result wit u is a no-op

Hr (MR) = Ur (Ay) us(nsp) = us{p} Hrs (NMrs P) = Urs (A4 {Pp})
=2, (AgP)gg =Ule} =As Jimg I me (A, {9} g}
=g g = {x|x € ¢} =2 Uimg I m e {¢p}}
=¢ =¢ =, Ulog}
=Agdg

- ¢

Relating p to «: R

Even more to the point, given any higher-order structure, it doesn’t matter whether
we flatten the outer structure first or the inner one

AidjAk eeinnfoko.. AidjAk eeiejoke..
ApAp...h...h...k.. Ai Ay i...k...k
P p

20

Relating u to e: S

Even more to the point, given any higher-order structure, it doesn’t matter whether
we flatten the outer structure first or the inner one

PR PO S PN SN S ...}, .. L L0 0

. . — T TS
Hs Hs Hs Hs

m' Ime{.},m em} {lalm ef{..}yaem'}l,{a|m e {...},aEm’},...}’
Hs JS

{falme{...},m emaem} {falme{...},m emaem'}

21

Relating u to e: RS

The same is true of RS, though it is a little more tedious to work out

MR (Hr M) = UR(uR e M) = AgMggyg
us (pus M) = ps(us e M) = {almeMm ec¢m,acm'}
Urs (MRsM) = rs(prs e M) = AglalmeMg,m €emg,aecm g}

The set-flattening and environment-sharing are simply interleaved all the way down.

Monads

Indeed, any functor for which there is a p satisfying these equations is known as a

Monad
Left Identity unM)=M

Right Identity u(neM) =M
Associativity p(uM) = pu(ue M)

For historical reasons, in Haskell the n of a Monad is called its return, and the u

called its join

return :: Monad f => a -> f a
join :: Monad f => f (fa) -> f a

23

Parser interlude

Again, stretching the parser is no more complicated than composing our existing

modes of combination with join

combine' :: Type -> Type -> [(Mode, Type)]

combine' T r = add] $ combine 1 r ++

[(LR op, Eff f) |

[(LL op, Eff f o) |

[(A op, Eff f o) |

add] :: [(Mode, Type)]
add) e = e ++
[(O op, Eff £ a)

Eff f a <- [1]

functor f, (op, c) <- combine' a r] ++
Eff f b <- [r]

functor f, (op, c) <- combine' T b] ++
Eff f a <- [1], Eff g b <- [r], f ==g¢g

applicative f, (op, c) <- combine' 1 b]

-> [(Mode, Type)]

| (op, Eff f (Eff g a)) <- e

, monad f
, F==91

24

Refactoring to

It turns out, an equivalent way to state a monad uses = and n in place of « and u

ei(x—P)—Fa—Fp nza—Fa
uzFFa—Fo xzFo— (u— FP) - FP

The Haskell name for x is >>=, pronounced, tellingly, as bind

class Monad f where
return :: a -> f a
(>>=) :: fa->((@->Ffb) >fb

The monad laws governing n and take the forms:

Left Identity naxk=ka
Right Identity m xn=m
Associativity (m xAzna) xo=m * (Agzna * o)

25

Defining binds

The sense in which the ¢ / u construction and the n / *x construction are equivalent
is that they are interdefinable in a law-preserving way

UM =

26

Defining binds

The sense in which the ¢ / u construction and the n / *x construction are equivalent
is that they are interdefinable in a law-preserving way

UM =M xid

m* k=

26

Defining binds

The sense in which the ¢ / u construction and the n / *x construction are equivalent
is that they are interdefinable in a law-preserving way

UM =M xid
mx*k=pu(kem)

Let’s work out the * (‘bind’) operations for R, S, and RS:

m o« f =

26

Defining binds

The sense in which the ¢ / u construction and the n / *x construction are equivalent
is that they are interdefinable in a law-preserving way

UM =M xid
mx*k=pu(kem)

Let’s work out the * (‘bind’) operations for R, S, and RS:

mx fi=2Asf(mg)g

26

Defining binds

The sense in which the ¢ / u construction and the n / *x construction are equivalent
is that they are interdefinable in a law-preserving way

UM =M xid
mx*k=pu(kem)

Let’s work out the * (‘bind’) operations for R, S, and RS:

mx fi=A;f(mg)g m o f =

26

Defining binds

The sense in which the ¢ / u construction and the n / *x construction are equivalent
is that they are interdefinable in a law-preserving way

UM =M xid
mx*k=pu(kem)

Let’s work out the * (‘bind’) operations for R, S, and RS:

m o« f =)\gf (mg)g m o+ fi=Usem X

26

Defining binds

The sense in which the ¢ / u construction and the n / *x construction are equivalent

is that they are interdefinable in a law-preserving way

UM =M xid
mx*k=pu(kem)

Let’s work out the * (‘bind’) operations for R, S, and RS:

m o« f =)\gf (mg)g m o+ fi=Usem X

m

N

26

Defining binds

The sense in which the ¢ / u construction and the n / *x construction are equivalent
is that they are interdefinable in a law-preserving way

UM =M xid
mx*k=pu(kem)

Let’s work out the * (‘bind’) operations for R, S, and RS:

mx fi=Aqf(mg)g m* f 1= Uyem fX m - fi=Ag UXE}‘)‘Ig.fXg

26

Monads are Applicative

If we harmlessly swap the order of *’s arguments, you can see an interesting

progression:
ei(a—b)—-Fa—Fb

®:F(a—b)—-Fa—-Fb
Akdyym x k= (a—Fb)—Fa—Fb

It’s not hard to see that ® can be defined in terms of *:

®:F(a—b)—Fa—-Fb
Fe A=

Monads are Applicative

If we harmlessly swap the order of *’s arguments, you can see an interesting

progression:
ei(a—b)—-Fa—Fb

®:F(a—b)—-Fa—-Fb
Akdyym x k= (a—Fb)—Fa—Fb

It’s not hard to see that ® can be defined in terms of *:

®:F(a—b)—Fa—-Fb
FOoA=F*xAfAxAzn(fa)

And as long as satisfies the Monad laws, the ® defined above will be guaranteed
to satisfy the Applicative laws

So every Monad is an Applicative

Monads are Functors

If we harmlessly swap the order of *’s arguments, you can see an interesting

progression:
ei(a—b)—-Fa—Fb

®:F(a—b)—-Fa—-Fb
Akdyym x k= (a—Fb)—Fa—Fb

It’s not hard to see that e can be defined in terms of *:

ex(a—b)—Fa—Fb
ke A=

28

Monads are Functors

If we harmlessly swap the order of *’s arguments, you can see an interesting

progression:
ei(a—b)—-Fa—Fb

®:F(a—b)—-Fa—-Fb
Akdyym x k= (a—Fb)—Fa—Fb

It’s not hard to see that e can be defined in terms of *:

ex(a—b)—Fa—Fb
ke A=AxAzn(ka)

And as long as satisfies the Monad laws, the ® defined above will be guaranteed
to satisfy the Functor laws

So every Monad is a Functor

28

Compared

So in general, we have:

m*k=pu(kem)

And given that also:

kem=nkom

You can see the x hiding in the chain of type shifts from our binding derivation:

RSt
|u
RSRSt
RSe RSe — RSRSt
a linguist ‘ ®
RS(e — RSt)
E

e—~RSt

RSt

T

(e = RSt) -RSt e—RSt

*

RSe
a linguist

29

How to use x

Adding * to the grammar isn’t as obviously immediately useful as adding and ®
because functions of type (a — Fb) don’t occur very naturally in the wild

And moreover, with just the combinators we have, there’s no way to pull an
(a— Fb) out of an (a — b)

St St
{spokex | lingx} {spokex | lingx}
Se Se—St (e—~St)—-St e—-St
{x |lingx} Ag{spokex | x € E} Ax U{kx | lingx} Ay {spokex}
a linguist ‘® . spoke
S(e—t) Se ‘
{spoke} {x | lingx}
spoke a linguist ‘
"’ e—t
e—t spoke

spoke

30

How to use x

But the type signature of the x-shifted subject might set alarm bells ringing if
you're a linguist
St
{spokex | lingx}

T

(e—St) —»St e—St
Ak U{kx | lingx} Ay {spokex}

. spoke
se ‘

{x | lingx}
a linguist ‘
e—~t
spoke

It looks an awful lot like good old LIFT-ing

LIFT:e—(e—-1t) -t

xtFe—(e—Ft)—Ft

* and scope

In fact, if your fancy individual is not actually fancy, then the first Monad law
Left Identity na x k =ka

just says that
(na)* = Axka = L1IFTa

This makes you wonder if you can use any of the techniques invented to deal with
Generalized Quantifiers to facilitate composition

In particular, it calls for a theory of scope

Scope via “Q"R

This might take the form of re-introducing raising and abstraction into the syntax:

St Rt
{spokex | lingx} Ag spoke go
(e—=St)—-St e—St (e = Rt) =Rt e —~Rt
AxU{kx | lingx} Ay {spokex} AkAgkgog AxAg spokex
. /\ . /\
Se Ax St Re Ax Rt
{x | lingx} {spokex} Ag 9o Agspokex
A ‘ A
n ‘rl
t t
spokex spoke x

(These are guaranteed to deliver the same results as the derivations with ®)

Scope via C

Or alternatively, you might recall that scope-taking itself is a kind of effect

Cei=(e—Ft)-Ft
nx = Axkx
men=Am@Arn(Ack(fx)))

From this perspective, * looks like a kind of Natural Transformation from one
effect to another
* tFa—Ca

In which case, we should be able to use C's ® to handle composition

Scope via C in action

Ct
Ak.[alog] = (Ay.[aling] » (Ax.k(sawx y)))
= Ak.U{k (sawx y) | lingx, logy}

/\

Ce Ce—-Ct
Ak.[alog] » kK Am.Ak.[aling] » (Ax.m (Ay.k(sawxy)))

* ‘ ®
Se Cle—1)
[alog] Ak.[aling] » (Ax.k(sawx))
a logician /\
Ce—-C(e—-1) Ce
An.Ak.n(Ax.k(sawx)) Ak.[aling] * k
‘ ® *
Cle—e—1) Se
Ak.ksaw [a ling]
‘ n a linguist
e—-e—t
saw

Saw

35

More Monads

As it happens, nearly all of the basic Functors we’ve introduced as case studies turn
out to be Monads

For instance

data Maybe a = Just a | Nothing
instance Monad Maybe where
return a = Just a
join m = case m of
Just (Just a) > a
-> Nothing

36

More Monads

As it happens, nearly all of the basic Functors we’ve introduced as case studies turn
out to be Monads

For instance

data Maybe a = Just a | Nothing
instance Monad Maybe where
return a = Just a
join m = case m of
Just (Just a) > a
-> Nothing

data Writer w a = Writer (a, w)

instance Monad (Writer [E]) where
return a =...

36

More Monads

As it happens, nearly all of the basic Functors we’ve introduced as case studies turn
out to be Monads

For instance

data Maybe a = Just a | Nothing
instance Monad Maybe where
return a = Just a
join m = case m of
Just (Just a) > a
_ -> Nothing

data Writer w a = Writer (a, w)

instance Monad (Writer [E]) where
return a = Writer (a, [1)
join (Writer (Writer (a, Xs), ys)) =...

More Monads

As it happens, nearly all of the basic Functors we’ve introduced as case studies turn
out to be Monads

For instance

data Maybe a = Just a | Nothing
instance Monad Maybe where
return a = Just a
join m = case m of
Just (Just a) > a
_ -> Nothing

data Writer w a = Writer (a, w)

instance Monad (Writer [E]) where
return a = Writer (a, [1)
join (Writer (Writer (a, xs), ys)) = Writer (a, Xs ++ ys)

36

Fewer Monads

At the same time, many of the Functors we've seen are not (obviously) Monads

WRo = (r— o, [t])
na=...

(fipy*xk=...

There’s no obvious way to define this even though W and R are themselves Monads

This means that while. ..

@ the composition of two Functors is a Functor

@ the composition of two Applicatives is an Applicative

,E the composition of two Monads is not necesarrily a Monad

Layer with caution

Notably, though RS is a monad (as we’ve seen), SR is (probably?) not!

RSa=r— {a}
na:Ag{a}
m*k=2Ag|J{kalaecmg}

SRa = {r —a}
na=...

mx*k=...

38

Distributive transformations

So how can you tell when a composition of Monads FG is a Monad? That is, how can
you know whether there is a (law-abiding) function

MFG = FGFGo — FGo

One thing to notice is that since F and G are Monads, we are guaranteed functions

U = FFou— Fo
UG = GGo — Go

If we just had a function
Y : GFo— FGo,

then it seems like we'd be golden, since we could build the following pipeline:

pirc = FGFG — FFGG — FGG — FG
Y HF Hc

Distributing S over R

And indeed, for the composition RS, there’s a natural way to get home when the

effects are inverted
Y SRt — RS

Y=...

It is so natural in fact, it is called a Distributive Natural Transformation, which
means it satisfies these laws (and a few others)

Y(nresS) =nNrS
Y (nsR) =ns er R
SorsYM =Y (f esg M)

As suspected, any time there is a Distributive Y = GF — FG with these properties, you
can be sure FG is a Monad!

! Beck 1969

40

Distributing S over R

And indeed, for the composition RS, there’s a natural way to get home when the

effects are inverted
Y SRt — RS

Y =2Audg{fglfeM}

It is so natural in fact, it is called a Distributive Natural Transformation, which
means it satisfies these laws (and a few others)

Y(nresS) =nNrS
Y (nsR) =ns er R
SorsYM =Y (f esg M)

As suspected, any time there is a Distributive Y = GF — FG with these properties, you
can be sure FG is a Monad!

! Beck 1969

40

Distributing R over S

But for SR, we’d need to define a function in the opposite direction

Y i RS — SR
Y=...

2Bumford 2022

41

Distributing R over S

But for SR, we’d need to define a function in the opposite direction

Y i RS — SR
Y=...

It turns out that no such function can ever satisfy the Distributive laws?

2Bumford 2022

41

Dynamics

42

Dynamic binding

S

. Polly left. She was tired.

5. A linguist left. She was tired.

o

Every linguist left. ??She was tired.

43

The basic idea3

n-a

79"t

g > Polly™ left > gh—P g > a linguist” left - > gh-c

A gn-
g

q gn—e

9

@ Dref introduction is assignment modification.
@ Indefinites introduce drefs non-deterministically.

@ New drefs may (not) pan out downstream (cf. Stalnaker 1978).

3 Heim (1982), Barwise (1987), Groenendijk & Stokhof (1991), and Muskens (1996), etc.

44

Dynamics

Consider this (standard, DPL-ish) dynamic system:

[3x] =2A,{g"%1deD}
[pAyl=Ag{heklwllkegldl}

Consider what ‘effects’ are embodied in this system (in what ways is it ‘richer’ than
the basic grammar we began with?).

A dynamic monad

Can you devise an applicative type constructor F that does justice to these effects?

Can you devise a trivial way to ‘lift’ an a into an Da, and an * recipe for composing

aa—Db and an Da to give an Db?

RSa:=g—-Sa Da :=
nx = Ag{x} nx =
m*f::AgUxemngQ mx f =

Bonus food for thought: is D commutative? Does that seem important?

46

A dynamic monad

Can you devise an applicative type constructor F that does justice to these effects?

Can you devise a trivial way to ‘lift’ an a into an Da, and an * recipe for composing

aa—Db and an Da to give an Db?

RSa:=g—-Sa Da:=g—-S(axg)
nx = Ag{x} nx =
m*f::AgUxemngQ mx* f =

Bonus food for thought: is D commutative? Does that seem important?

46

A dynamic monad

Can you devise an applicative type constructor F that does justice to these effects?

Can you devise a trivial way to ‘lift’ an a into an Da, and an * recipe for composing

aa—Db and an Da to give an Db?

RSa:=g—-Sa Da:=g—-S(axg)
nx = Agix} nx = Ag{(x,9)}
mx f = AgUxemg fXg mx f =

Bonus food for thought: is D commutative? Does that seem important?

46

A dynamic monad

Can you devise an applicative type constructor F that does justice to these effects?

Can you devise a trivial way to ‘lift’ an a into an Da, and an * recipe for composing

aa—Db and an Da to give an Db?

RSa:=g—-Sa Da:=g—-S(axg)
nx = Agix} nx = Ag{(x,9)}
mx* f = Ag UxemngQ mx* f = Ag U(x,h)emngh'

Bonus food for thought: is D commutative? Does that seem important?

46

Binding
Remember the binding operator defined earlier

>, tR(e—-0)—e—Ro

Dp = AmAx(Agmgt~) enx

With scope-taking in the grammar, we can make this a little simpler, since we can
build (e — RFo) functions directly[~bur]

Dp o= AfAxAg fxgh™™>

Again, this operation is Effect-polymorphic; any Effect beginning with R, including
D = RSW
>, (e —~Ro)—-e—-Ro

>, (e —-RSo) - e—RSo
>, (e~ RWo) - e—RWo

>y, (e - RSWo) — e — RSWo

47

Dynamic binding
In D, >-referents are stored for later

Dt
Ag {(spokex, g°~¥) | x € ling}

/\

(e—Dt)—-Dt e—-Dt
ArAg Uxeling fX 9 Ax Ay {(spokex, g"~¥)}

* ‘ >0

De e—-Dt

Ag{(x,9) | x €ling} AxAg{(spokex,g)}
A
/\
Ax Dt
A [(spokex, g)}
E
t
spoke x

48

Associativity

For any monadic T, the Associativity law guarantees that the two derivations below
are equivalent. It’s as if m had scoped out of Tb , without actually doing so

Tc

AA

»>(b—-Tc)~Tc »(a—-Tc)~Tc a-Tc

”A /N
NN A

»(a—-Th)~Th a-Th wyib.. > (b -Tc)—

Ax Th
e Xia ..

49

Dynamic binding via static conjunction

Dt = A, {(camex A satx,g°~¥) | x € ling}

/\

> (t—-Dt)-Dt

*

N

(e—~Dt)—-Dt e-—-Dt

* ‘ >0
De e—Dt
a.ling /\
A

Ax Dt

E
t

camex

t—-Dt

/\

Dt = Ag{(camex, g*~¥) | x € ling} Ap Dt

/\

> (t—-Dt)—-Dt t-Dt

: /\

Dt = Ag{(satgo,g)} Aq Dt

N [

(e—~Dt)—-Dt e-Dt t
" /\ pra
De Ay Dt
sheg ‘f]
A
t

saty

50

Reassociating

Associativity (m x Agna) o =m x (Agzna x o)

(a.Iing0 * Ay n(camex)) x A, (sheg x Ay n(saty)) x Agn(p A q)

aling® x Ay (n(camex) x A, (sheg x Ay n(saty)) x Agn(p Aq))

Barwise, Jon. 1987. Noun phrases, generalized quantifiers, and anaphora. In Peter Gardenfors (ed.), Generalized
Quantifiers, 1-29. Dordrecht: Reidel. https://doi.org/10.1007/978-94-009-3381-1_1.

Beck, Jon. 1969. Distributive laws. In Seminar on triples and categorical homology theory, 119-140.

Bumford, Dylan. 2022. Composition under distributive natural transformations: or, when predicate abstraction is
impossible. Journal of Logic, Language and Information. 1-21.

Charlow, Simon. 2019. A modular theory of pronouns and binding. Unpublished ms., Rutgers University.
https://1ing.auf.net/1ingbuzz/003720.

Groenendijk, Jeroen & Martin Stokhof. 1991. Dynamic predicate logic. Linguistics and Philosophy 14(1). 39-100.
https://doi.org/10.1007/BF00628304.

Heim, Irene. 1982. The semantics of definite and indefinite noun phrases. University of Massachusetts, Amherst
Ph.D. thesis. https://semanticsarchive.net/Archive/Tk0ZmYyY/.

Kiselyov, Oleg. 2015. Applicative abstract categorial grammars. In Makoto Kanazawa, Lawrence S. Moss &
Valeria de Paiva (eds.), NLCS’15. Third workshop on natural language and computer science, vol. 32 (EPiC
Series), 29-38.

McBride, Conor & Ross Paterson. 2008. Applicative programming with effects. Journal of Functional Programming
18(1). 1-13. https://doi.org/10.1017/S0956796807006326.

Muskens, Reinhard. 1996. Combining Montague semantics and discourse representation. Linguistics and
Philosophy 19(2). 143-186. https://doi.org/10.1007/BF00635836.

52

https://doi.org/10.1007/978-94-009-3381-1_1
https://ling.auf.net/lingbuzz/003720
https://doi.org/10.1007/BF00628304
https://semanticsarchive.net/Archive/Tk0ZmYyY/
https://doi.org/10.1017/S0956796807006326
https://doi.org/10.1007/BF00635836

Stalnaker, Robert. 1978. Assertion. In Peter Cole (ed.), Pragmatics, vol. 9 (Syntax and Semantics), 315-332. New
York: Academic Press.

53

