
Effectful composition in natural language semantics

From Applicatives to Monads

Simon Charlow (Rutgers) Dylan Bumford (UCLA)

ESSLLI 2022, NUI Galway

1

Recap

2

Applicatives

F is applicative if it supports η and ç with these types. . .

η : a→ F a ç : F (a→ b)→ F a→ F b

. . . Where η is a trivial way to inject something into the richer type characterized by

F , and ç is function application lifted into F .

McBride & Paterson 2008, Kiselyov 2015, Charlow 2019.
3

Three applicatives

Sa ::= {a}

ηx := {x}

mçn :=
{
f x | f ∈m,x ∈ n

}
Ra ::= g→ a

ηx := λgx

mçn := λgmg(ng)

Wa ::= a× t

ηx := (a,T)

(f ,p)ç (x, q) := (f x,p ∧ q)

4

Derivations: a linguist spoke/she0 spoke/Roger, a linguist, spoke

St{
spokex | x ∈ ling

}

Se{
x | x ∈ ling

} Se→ St

λn.{spokex | x ∈ n}

S(e→ t)

{spoke}

e→ t

spoke

ç

η

Rt

λg spokeg0

Re

λg g0

Re→ Rt

λn.λg spoke(ng)

R(e→ t)

λg spoke

e→ t

spoke

ç

η

Wt

(spoker, lingr)

We

(r, lingr)

We→ Wt

λ(x, q).(spokex,q)

W(e→ t)

(spoke,T)

e→ t

spoke

ç

η

5

Derivations: a linguist spoke/she0 spoke/Roger, a linguist, spoke

St{
spokex | x ∈ ling

}

Se{
x | x ∈ ling

} Se→ St

λn.{spokex | x ∈ n}

S(e→ t)

{spoke}

e→ t

spoke

ç

η

Rt

λg spokeg0

Re

λg g0

Re→ Rt

λn.λg spoke(ng)

R(e→ t)

λg spoke

e→ t

spoke

ç

η

Wt

(spoker, lingr)

We

(r, lingr)

We→ Wt

λ(x, q).(spokex,q)

W(e→ t)

(spoke,T)

e→ t

spoke

ç

η

5

Derivations: a linguist spoke/she0 spoke/Roger, a linguist, spoke

St{
spokex | x ∈ ling

}

Se{
x | x ∈ ling

} Se→ St

λn.{spokex | x ∈ n}

S(e→ t)

{spoke}

e→ t

spoke

ç

η

Rt

λg spokeg0

Re

λg g0

Re→ Rt

λn.λg spoke(ng)

R(e→ t)

λg spoke

e→ t

spoke

ç

η

Wt

(spoker, lingr)

We

(r, lingr)

We→ Wt

λ(x, q).(spokex,q)

W(e→ t)

(spoke,T)

e→ t

spoke

ç

η

5

Derivations: a linguist spoke/she0 spoke/Roger, a linguist, spoke

St{
spokex | x ∈ ling

}

Se{
x | x ∈ ling

} Se→ St

λn.{spokex | x ∈ n}

S(e→ t)

{spoke}

e→ t

spoke

ç

η

Rt

λg spokeg0

Re

λg g0

Re→ Rt

λn.λg spoke(ng)

R(e→ t)

λg spoke

e→ t

spoke

ç

η

Wt

(spoker, lingr)

We

(r, lingr)

We→ Wt

λ(x, q).(spokex,q)

W(e→ t)

(spoke,T)

e→ t

spoke

ç

η

5

Monads

6

Indefinites and pronouns

Indefinite noun phrases can host pronouns:

1. Mary submitted a paper she wrote

Given what we have said so far, the type of a pronoun-harboring indefinite should

include at least a Reading effect and a Set effect:

RSe = r→ {e} SRe = {r→ e}

With a little thought, you can convince yourself that only one of these makes any

sense

�a paper she0 wrote� =

λg
{
x | paperx,writexg0

}

7

Indefinites and pronouns

Indefinite noun phrases can host pronouns:

1. Mary submitted a paper she wrote

Given what we have said so far, the type of a pronoun-harboring indefinite should

include at least a Reading effect and a Set effect:

RSe = r→ {e} SRe = {r→ e}

With a little thought, you can convince yourself that only one of these makes any

sense

�a paper she0 wrote� = λg
{
x | paperx,writexg0

}

7

Indefinites and binding

Indefinite noun phrases can also bind pronouns

2. A linguist submitted a paper she wrote.

Intuitively, (2) is ambiguous between these two meanings:

3. a. λg
{
submityx | lingx,papery,wroteyx

}︸ ︷︷ ︸
RSt

b. λg
{
submityx | lingx,papery,wroteyg0

}︸ ︷︷ ︸
RSt

How can these meanings be composed?

8

Modifying environments

Remember that we are treating pronouns as triggering a Read effect on the

environment

So to accomplish the “bound” reading of (2), we need some mechanism to allow

expressions to modify the environment that other expressions are evaluated in:

.n := λmλx(λgmgn→x)ç ηx

Note that this operation is Effect-polymorphic; it will work for any composition of

Functors beginning with R

.n :: R(e→ σ)→ e→ Rσ

.n :: RS(e→ σ)→ e→ RSσ

.n :: RW(e→ σ)→ e→ RWσ

.n :: RWS(e→ σ)→ e→ RSWσ

.

9

. . . binding . . .

Rt

λg deposited(paycheckg0→m
0)m

e

Mary

e→ Rt

λx(λg · · · g0→x)ç ηx
= λxλg deposit(paycheckg0→x0)x

.0 R(e→ t)

λg deposit(paycheckg0)

Re→ R(e→ t)

R(e→ e→ t)

e→ e→ t

deposited

Re

λg paycheckg0
her0 paycheck

ç

η

10

. . . binding . . .

Rt

λg deposited(paycheckg0→m
0)m

e

Mary

e→ Rt

λx(λg · · · g0→x)ç ηx
= λxλg deposit(paycheckg0→x0)x

.0 R(e→ t)

λg deposit(paycheckg0)

Re→ R(e→ t)

R(e→ e→ t)

e→ e→ t

deposited

Re

λg paycheckg0
her0 paycheck

ç

η

10

. . . binding . . .

Rt

λg deposited(paycheckg0→m
0)m

e

Mary

e→ Rt

λx(λg · · · g0→x)ç ηx

= λxλg deposit(paycheckg0→x0)x

.0 R(e→ t)

λg deposit(paycheckg0)

Re→ R(e→ t)

R(e→ e→ t)

e→ e→ t

deposited

Re

λg paycheckg0
her0 paycheck

ç

η

10

. . . binding . . .

Rt

λg deposited(paycheckg0→m
0)m

e

Mary

e→ Rt

λx(λg · · · g0→x)ç ηx
= λxλg deposit(paycheckg0→x0)x

.0 R(e→ t)

λg deposit(paycheckg0)

Re→ R(e→ t)

R(e→ e→ t)

e→ e→ t

deposited

Re

λg paycheckg0
her0 paycheck

ç

η

10

. . . binding into indefinites

RSt

λg
{
subym | papery,writeyg0→m

0

}

e

Mary

e→ RSt

λx(λg · · · g0→x)ç ηx
= λxλg

{
subyx | papery,writeyg0→x0

}

RS(e→ t)→ RSe→ RSt

.0

RS(e→ t)

λg {suby | papery,writeyg0}

RSe→ RS(e→ t)

RS(e→ e→ t)

e→ e→ t

submitted

RSe

λg {subx | paperx,writexg0}
a paper she0 wrote

ç

η

11

. . . binding into indefinites

RSt

λg
{
subym | papery,writeyg0→m

0

}

e

Mary

e→ RSt

λx(λg · · · g0→x)ç ηx
= λxλg

{
subyx | papery,writeyg0→x0

}

RS(e→ t)→ RSe→ RSt

.0

RS(e→ t)

λg {suby | papery,writeyg0}

RSe→ RS(e→ t)

RS(e→ e→ t)

e→ e→ t

submitted

RSe

λg {subx | paperx,writexg0}
a paper she0 wrote

ç

η

11

. . . binding into indefinites

RSt

λg
{
subym | papery,writeyg0→m

0

}

e

Mary

e→ RSt

λx(λg · · · g0→x)ç ηx

= λxλg
{
subyx | papery,writeyg0→x0

}

RS(e→ t)→ RSe→ RSt

.0

RS(e→ t)

λg {suby | papery,writeyg0}

RSe→ RS(e→ t)

RS(e→ e→ t)

e→ e→ t

submitted

RSe

λg {subx | paperx,writexg0}
a paper she0 wrote

ç

η

11

. . . binding into indefinites

RSt

λg
{
subym | papery,writeyg0→m

0

}

e

Mary

e→ RSt

λx(λg · · · g0→x)ç ηx
= λxλg

{
subyx | papery,writeyg0→x0

}

RS(e→ t)→ RSe→ RSt

.0

RS(e→ t)

λg {suby | papery,writeyg0}

RSe→ RS(e→ t)

RS(e→ e→ t)

e→ e→ t

submitted

RSe

λg {subx | paperx,writexg0}
a paper she0 wrote

ç

η

11

Indefinites binding into indefinites

RSt

???

RSe

λg {x | lingx}
a linguist

e→ RSt

λxλg
{
subyx | papery,writeyg0→x0

}

RS(e→ t)→ RSe→ RSt

.0

RS(e→ t)

λg {suby | papery,writeyg0}

RSe→ RS(e→ t)

RS(e→ e→ t)

e→ e→ t

submitted

RSe

λg {subx | paperx,writexg0}
a paper she0 wrote

ç

η

12

Getting closer

RSt

λg
{
subyx | lingx,papery,wroteyx

}

RSRSt

λg
{
λh {subyx | papery,wroteyh0→x0 } | lingx

}

RSe

λg {x | lingx}
a linguist

RSe→ RSRSt

λE (λxλh {subyx | papery,writeyh0→x0 }) • E
= λEλg {λh {subyx | papery,writeyh0→x0 } | x ∈ Eg}

e→ RSt

λxλh
{
subyx | papery,writeyh0→x0

}

submitted a paper she wrote

???

•

The meaning we can get has two layers of independent RS structure

But to get the meaning we want, we’ll need a way to flatten them somehow

µ :: RSRSa→ RSa

13

Getting closer

RSt

λg
{
subyx | lingx,papery,wroteyx

}

RSRSt

λg
{
λh {subyx | papery,wroteyh0→x0 } | lingx

}

RSe

λg {x | lingx}
a linguist

RSe→ RSRSt

λE (λxλh {subyx | papery,writeyh0→x0 }) • E
= λEλg {λh {subyx | papery,writeyh0→x0 } | x ∈ Eg}

e→ RSt

λxλh
{
subyx | papery,writeyh0→x0

}

submitted a paper she wrote

???

•

The meaning we can get has two layers of independent RS structure

But to get the meaning we want, we’ll need a way to flatten them somehow

µ :: RSRSa→ RSa

13

Getting closer

RSt

λg
{
subyx | lingx,papery,wroteyx

}

RSRSt

λg
{
λh {subyx | papery,wroteyh0→x0 } | lingx

}

RSe

λg {x | lingx}
a linguist

RSe→ RSRSt

λE (λxλh {subyx | papery,writeyh0→x0 }) • E
= λEλg {λh {subyx | papery,writeyh0→x0 } | x ∈ Eg}

e→ RSt

λxλh
{
subyx | papery,writeyh0→x0

}

submitted a paper she wrote

???

•

The meaning we can get has two layers of independent RS structure

But to get the meaning we want, we’ll need a way to flatten them somehow

µ :: RSRSa→ RSa

13

Getting closer

RSt

λg
{
subyx | lingx,papery,wroteyx

}

RSRSt

λg
{
λh {subyx | papery,wroteyh0→x0 } | lingx

}

RSe

λg {x | lingx}
a linguist

RSe→ RSRSt

λE (λxλh {subyx | papery,writeyh0→x0 }) • E
= λEλg {λh {subyx | papery,writeyh0→x0 } | x ∈ Eg}

e→ RSt

λxλh
{
subyx | papery,writeyh0→x0

}

submitted a paper she wrote

???

•

The meaning we can get has two layers of independent RS structure

But to get the meaning we want, we’ll need a way to flatten them somehow

µ :: RSRSa→ RSa

13

Getting closer

RSt

λg
{
subyx | lingx,papery,wroteyx

}

RSRSt

λg
{
λh {subyx | papery,wroteyh0→x0 } | lingx

}

RSe

λg {x | lingx}
a linguist

RSe→ RSRSt

λE (λxλh {subyx | papery,writeyh0→x0 }) • E
= λEλg {λh {subyx | papery,writeyh0→x0 } | x ∈ Eg}

e→ RSt

λxλh
{
subyx | papery,writeyh0→x0

}

submitted a paper she wrote

???

•

The meaning we can get has two layers of independent RS structure

But to get the meaning we want, we’ll need a way to flatten them somehow

µ :: RSRSa→ RSa

13

R flattener

Let’s warm up by finding a function with the following type:

µ :: RRa→ Ra

The obvious candidate duplicates an assignment:

µM := λgMgg

14

R flattener

Let’s warm up by finding a function with the following type:

µ :: RRa→ Ra

The obvious candidate duplicates an assignment:

µM := λgMgg

14

S flattener

Let’s warm up by finding a function with the following type:

µ :: SSa→ Sa

The obvious candidate takes the grand union:

µM :=
⋃
M

= {a |m ∈ M,a ∈m}

15

S flattener

Let’s warm up by finding a function with the following type:

µ :: SSa→ Sa

The obvious candidate takes the grand union:

µM :=
⋃
M

= {a |m ∈ M,a ∈m}

15

RS flattener

So can we define a flattener function for RS?

µ :: RSRSa→ RSa

The obvious candidate mixes R’s and S’s µ operations:

µM := λg
⋃{
mg |m ∈ Mg

}
= λg

{
a |m ∈ Mg,a ∈mg

}

16

RS flattener

So can we define a flattener function for RS?

µ :: RSRSa→ RSa

The obvious candidate mixes R’s and S’s µ operations:

µM := λg
⋃{
mg |m ∈ Mg

}
= λg

{
a |m ∈ Mg,a ∈mg

}

16

Flattening in action

RSt

RSRSt

λg
{
λh {subyx | papery,writeyh0→x0 } | lingx

}

RSe

a linguist

RSe→ RSRSt

e→ RSt

submitted a paper she wrote

µ

•

µ(λg
{
λh
{
. . . h0→x0 . . .

}
| lingx

}
) = λg

{
a |m ∈ (λg

{
λh
{
. . . h0→x0 . . .

}
| lingx

}
)g, a ∈mg

}
= λg

{
a |m ∈

{
λh
{
. . . h0→x0 . . .

}
| lingx

}
, a ∈mg

}
= λg

{
a | lingx, a ∈ (λh

{
. . . h0→x0 . . .

}
)g
}

= λg
{
a | lingx, a ∈

{
. . . g0→x0 . . .

}}
= λg

{
submityx | lingx,papery,wroteyx

}
17

More on µ

µM := λg
⋃

m∈Mg
mg

= λg
{
a |m ∈ Mg, a ∈mg

}
This µ was cooked specifically to make composition possible in this particular

structure

A natural question to ask is how specific it is to the task at hand, centered around a

particular derivation of binding

18

Relating µ to η

The grammars we’ve considered so far are built from functorial operations: η, •, ç

One thing we can readily observe is that for all of R, S, and RS, lifting a value with η

and then lowering the result wit µ is a no-op

µR (ηRφ) = µR (λgφ)

= λg (λgφ)gg

= λgφg

= φ

µS (ηSφ) = µS {φ}

=
⋃
{φ}

= {x | x ∈ φ}

= φ

µRS (ηRSφ) = µRS (λg {φ})

= λg
⋃
{mg |m ∈ (λg {φ})g}

= λg
⋃
{mg |m ∈ {φ}}

= λg
⋃
{φg}

= λgφg

= φ

19

Relating µ to •: R

Even more to the point, given any higher-order structure, it doesn’t matter whether

we flatten the outer structure first or the inner one

λiλj λk . . . i . . . j . . . k . . .︸ ︷︷ ︸
µR

λhλk . . . h . . . h . . . k . . .︸ ︷︷ ︸
µR

λg . . . g . . . g . . . g . . .

λiλj λk . . . i . . . j . . . k . . .︸ ︷︷ ︸
µR

λiλk . . . i . . . k . . . k . . .︸ ︷︷ ︸
µR

λg . . . g . . . g . . . g . . .

20

Relating µ to •: S

Even more to the point, given any higher-order structure, it doesn’t matter whether

we flatten the outer structure first or the inner one

{{{. . .}, . . .}, {{. . .}, . . .}, . . .}︸ ︷︷ ︸
µS

{m′ |m ∈ {. . .},m′ ∈m}︸ ︷︷ ︸
µS

{a |m ∈ {. . .},m′ ∈m,a ∈m′}

{{{. . .}, . . .}︸ ︷︷ ︸
µS

, {{. . .}, . . .}︸ ︷︷ ︸
µS

, . . .︸︷︷︸
µS

}

{{a |m′ ∈ {. . .}, a ∈m′}, {a |m′ ∈ {. . .}, a ∈m′}, . . .}︸ ︷︷ ︸
µS

{a |m ∈ {. . .},m′ ∈m,a ∈m′}

21

Relating µ to •: RS

The same is true of RS, though it is a little more tedious to work out

µR (µRM) = µR (µR •M) = λgMggg

µS (µSM) = µS (µS •M) = {a |m ∈ M,m′ ∈m,a ∈m′}
µRS (µRSM) = µRS (µRS •M) = λg {a |m ∈ Mg,m′ ∈mg,a ∈m′g}

The set-flattening and environment-sharing are simply interleaved all the way down.

22

Monads

Indeed, any functor for which there is a µ satisfying these equations is known as a

Monad
Left Identity µ(ηM) = M
Right Identity µ(η •M) = M
Associativity µ(µM) = µ(µ •M)

For historical reasons, in Haskell the η of a Monad is called its return, and the µ

called its join

return :: Monad f => a -> f a

join :: Monad f => f (f a) -> f a

23

Parser interlude

Again, stretching the parser is no more complicated than composing our existing

modes of combination with join

combine' :: Type -> Type -> [(Mode, Type)]

combine' l r = addJ $ combine l r ++

[(LR op, Eff f c) | Eff f a <- [l]

, functor f, (op, c) <- combine' a r] ++

[(LL op, Eff f c) | Eff f b <- [r]

, functor f, (op, c) <- combine' l b] ++

[(A op, Eff f c) | Eff f a <- [l], Eff g b <- [r], f == g

, applicative f, (op, c) <- combine' l b]

addJ :: [(Mode, Type)] -> [(Mode, Type)]

addJ e = e ++

[(J op, Eff f a)

| (op, Eff f (Eff g a)) <- e

, monad f

, f == g]
24

Refactoring to ?

It turns out, an equivalent way to state a monad uses ? and η in place of • and µ

• :: (α→ β)→ Fα→ Fβ η :: α→ Fα

µ :: FFα→ Fα ? :: Fα→ (α→ F β)→ F β

The Haskell name for ? is >>=, pronounced, tellingly, as bind

class Monad f where

return :: a -> f a

(>>=) :: f a -> (a -> f b) -> f b

The monad laws governing η and ? take the forms:

Left Identity ηa? k = ka
Right Identity m?η =m
Associativity (m? λana) ? o =m? (λana? o)

25

Defining binds

The sense in which the • / µ construction and the η / ? construction are equivalent

is that they are interdefinable in a law-preserving way

µM =

M ? id

m?k = µ(k •m)

Let’s work out the ? (‘bind’) operations for R, S, and RS:

m?f := λg f (mg)g m? f :=
⋃
x∈m f x m? f := λg

⋃
x∈mg f xg

26

Defining binds

The sense in which the • / µ construction and the η / ? construction are equivalent

is that they are interdefinable in a law-preserving way

µM = M ? id

m?k =

µ(k •m)

Let’s work out the ? (‘bind’) operations for R, S, and RS:

m?f := λg f (mg)g m? f :=
⋃
x∈m f x m? f := λg

⋃
x∈mg f xg

26

Defining binds

The sense in which the • / µ construction and the η / ? construction are equivalent

is that they are interdefinable in a law-preserving way

µM = M ? id

m?k = µ(k •m)

Let’s work out the ? (‘bind’) operations for R, S, and RS:

m?f :=

λg f (mg)g m? f :=
⋃
x∈m f x m? f := λg

⋃
x∈mg f xg

26

Defining binds

The sense in which the • / µ construction and the η / ? construction are equivalent

is that they are interdefinable in a law-preserving way

µM = M ? id

m?k = µ(k •m)

Let’s work out the ? (‘bind’) operations for R, S, and RS:

m?f := λg f (mg)g

m? f :=
⋃
x∈m f x m? f := λg

⋃
x∈mg f xg

26

Defining binds

The sense in which the • / µ construction and the η / ? construction are equivalent

is that they are interdefinable in a law-preserving way

µM = M ? id

m?k = µ(k •m)

Let’s work out the ? (‘bind’) operations for R, S, and RS:

m?f := λg f (mg)g m? f :=

⋃
x∈m f x m? f := λg

⋃
x∈mg f xg

26

Defining binds

The sense in which the • / µ construction and the η / ? construction are equivalent

is that they are interdefinable in a law-preserving way

µM = M ? id

m?k = µ(k •m)

Let’s work out the ? (‘bind’) operations for R, S, and RS:

m?f := λg f (mg)g m? f :=
⋃
x∈m f x

m? f := λg
⋃
x∈mg f xg

26

Defining binds

The sense in which the • / µ construction and the η / ? construction are equivalent

is that they are interdefinable in a law-preserving way

µM = M ? id

m?k = µ(k •m)

Let’s work out the ? (‘bind’) operations for R, S, and RS:

m?f := λg f (mg)g m? f :=
⋃
x∈m f x m? f :=

λg
⋃
x∈mg f xg

26

Defining binds

The sense in which the • / µ construction and the η / ? construction are equivalent

is that they are interdefinable in a law-preserving way

µM = M ? id

m?k = µ(k •m)

Let’s work out the ? (‘bind’) operations for R, S, and RS:

m?f := λg f (mg)g m? f :=
⋃
x∈m f x m? f := λg

⋃
x∈mg f xg

26

Monads are Applicative

If we harmlessly swap the order of ?’s arguments, you can see an interesting

progression:

• :: (a→ b)→ Fa→ Fb

ç :: F(a→ b)→ Fa→ Fb

λkλmm?k :: (a→ Fb)→ Fa→ Fb

It’s not hard to see that ç can be defined in terms of ?:

ç :: F(a→ b)→ Fa→ Fb

F çA =

F ? λf A? λaη(f a)

And as long as ? satisfies the Monad laws, the ç defined above will be guaranteed

to satisfy the Applicative laws

So every Monad is an Applicative

27

Monads are Applicative

If we harmlessly swap the order of ?’s arguments, you can see an interesting

progression:

• :: (a→ b)→ Fa→ Fb

ç :: F(a→ b)→ Fa→ Fb

λkλmm?k :: (a→ Fb)→ Fa→ Fb

It’s not hard to see that ç can be defined in terms of ?:

ç :: F(a→ b)→ Fa→ Fb

F çA = F ? λf A? λaη(f a)

And as long as ? satisfies the Monad laws, the ç defined above will be guaranteed

to satisfy the Applicative laws

So every Monad is an Applicative

27

Monads are Functors

If we harmlessly swap the order of ?’s arguments, you can see an interesting

progression:

• :: (a→ b)→ Fa→ Fb

ç :: F(a→ b)→ Fa→ Fb

λkλmm?k :: (a→ Fb)→ Fa→ Fb

It’s not hard to see that • can be defined in terms of ?:

• :: (a→ b)→ Fa→ Fb

k •A =

A? λaη(ka)

And as long as ? satisfies the Monad laws, the ç defined above will be guaranteed

to satisfy the Functor laws

So every Monad is a Functor

28

Monads are Functors

If we harmlessly swap the order of ?’s arguments, you can see an interesting

progression:

• :: (a→ b)→ Fa→ Fb

ç :: F(a→ b)→ Fa→ Fb

λkλmm?k :: (a→ Fb)→ Fa→ Fb

It’s not hard to see that • can be defined in terms of ?:

• :: (a→ b)→ Fa→ Fb

k •A = A? λaη(ka)

And as long as ? satisfies the Monad laws, the ç defined above will be guaranteed

to satisfy the Functor laws

So every Monad is a Functor

28

Compared

So in general, we have:

m?k = µ(k •m)

And given that also:

k •m = ηkçm

You can see the ? hiding in the chain of type shifts from our binding derivation:

RSt

RSRSt

RSe

a linguist

RSe→ RSRSt

RS(e→ RSt)

e→ RSt
...

...
...

µ

ç

η

RSt

(e→ RSt)→ RSt

RSe

a linguist

e→ RSt
...

...
...?

29

How to use ?

Adding ? to the grammar isn’t as obviously immediately useful as adding • and ç
because functions of type (a→ Fb) don’t occur very naturally in the wild

And moreover, with just the combinators we have, there’s no way to pull an

(a→ Fb) out of an (a→ b)

St{
spokex | lingx

}

Se{
x | lingx

}
a linguist

Se→ St

λE {spokex | x ∈ E}

S(e→ t)

{spoke}
spoke

e→ t

spoke

ç

η

St{
spokex | lingx

}

(e→ St)→ St

λk
⋃{
kx | lingx

}

Se{
x | lingx

}
a linguist

e→ St

λx {spokex}
spoke

. . .

e→ t

spoke

?
. . .

. . .

30

How to use ?

But the type signature of the ?-shifted subject might set alarm bells ringing if

you’re a linguist

St{
spokex | lingx

}

(e→ St)→ St

λk
⋃{
kx | lingx

}

Se{
x | lingx

}
a linguist

e→ St

λx {spokex}
spoke

. . .

e→ t

spoke

?
. . .

. . .

It looks an awful lot like good old lift-ing

lift :: e→ (e→ t)→ t

? :: Fe→ (e→ Ft)→ Ft

31

? and scope

In fact, if your fancy individual is not actually fancy, then the first Monad law

Left Identity ηa? k = ka

just says that

(ηa)? = λkka = lifta

This makes you wonder if you can use any of the techniques invented to deal with

Generalized Quantifiers to facilitate composition

In particular, it calls for a theory of scope

32

Scope via “Q”R

This might take the form of re-introducing raising and abstraction into the syntax:

St{
spokex | lingx

}

(e→ St)→ St

λk
⋃{
kx | lingx

}

Se{
x | lingx

}

e→ St

λx {spokex}

λx St

{spokex}

t

spokex

?

η

Rt

λg spokeg0

(e→ Rt)→ Rt

λkλg kg0g

Re

λg g0

e→ Rt

λx λg spokex

λx Rt

λg spokex

t

spokex

?

η

(These are guaranteed to deliver the same results as the derivations with ç)

33

Scope via C

Or alternatively, you might recall that scope-taking itself is a kind of effect

Ce ::= (e→ Ft)→ Ft

ηx = λkkx

mçn = λkm(λf n(λx k(f x)))

From this perspective, ? looks like a kind of Natural Transformation from one

effect to another

? :: Fa→ Ca

In which case, we should be able to use C’s ç to handle composition

34

Scope via C in action

Ct

λk.�a log� ? (λy.�a ling� ? (λx.k(sawxy)))

= λk.
⋃{
k(sawxy) | lingx, logy

}

Ce

λk.�a log� ? k

Se

�a log�

a logician

Ce→ Ct

λm.λk.�a ling� ? (λx.m(λy.k(sawxy)))

C(e→ t)

λk.�a ling� ? (λx.k(sawx))

Ce→ C(e→ t)

λn.λk.n(λx.k(sawx))

C(e→ e→ t)

λk.ksaw

e→ e→ t

saw

saw

Ce

λk.�a ling� ? k

Se

�a ling�

a linguist

? ç

ç

η

?

35

More Monads

As it happens, nearly all of the basic Functors we’ve introduced as case studies turn

out to be Monads

For instance,

data Maybe a = Just a | Nothing

instance Monad Maybe where

return a = Just a

join m = case m of

Just (Just a) -> a

_ -> Nothing

data Writer w a = Writer (a, w)

instance Monad (Writer [E]) where

return a = Writer (a, [])

join (Writer (Writer (a, xs), ys)) = Writer (a, xs ++ ys)

36

More Monads

As it happens, nearly all of the basic Functors we’ve introduced as case studies turn

out to be Monads

For instance,

data Maybe a = Just a | Nothing

instance Monad Maybe where

return a = Just a

join m = case m of

Just (Just a) -> a

_ -> Nothing

data Writer w a = Writer (a, w)

instance Monad (Writer [E]) where

return a = ...

Writer (a, [])

join (Writer (Writer (a, xs), ys)) = Writer (a, xs ++ ys)

36

More Monads

As it happens, nearly all of the basic Functors we’ve introduced as case studies turn

out to be Monads

For instance,

data Maybe a = Just a | Nothing

instance Monad Maybe where

return a = Just a

join m = case m of

Just (Just a) -> a

_ -> Nothing

data Writer w a = Writer (a, w)

instance Monad (Writer [E]) where

return a = Writer (a, [])

join (Writer (Writer (a, xs), ys)) = ...

Writer (a, xs ++ ys)

36

More Monads

As it happens, nearly all of the basic Functors we’ve introduced as case studies turn

out to be Monads

For instance,

data Maybe a = Just a | Nothing

instance Monad Maybe where

return a = Just a

join m = case m of

Just (Just a) -> a

_ -> Nothing

data Writer w a = Writer (a, w)

instance Monad (Writer [E]) where

return a = Writer (a, [])

join (Writer (Writer (a, xs), ys)) = Writer (a, xs ++ ys)

36

Fewer Monads

At the same time, many of the Functors we’ve seen are not (obviously) Monads

WRα = 〈r→ α, [t]〉

ηa = . . .

〈f ,p〉? k = . . .

There’s no obvious way to define this even though W and R are themselves Monads

This means that while. . .

the composition of two Functors is a Functor

the composition of two Applicatives is an Applicative

A the composition of two Monads is not necesarrily a Monad

37

Layer with caution

Notably, though RS is a monad (as we’ve seen), SR is (probably?) not!

RSα = r→ {a}

ηa = λg {a}

m?k = λg
⋃
{ka | a ∈mg}

SRα = {r→ a}

ηa = . . .

m ? k = . . .

38

Distributive transformations

So how can you tell when a composition of Monads FG is a Monad? That is, how can

you know whether there is a (law-abiding) function

µFG :: FGFGα→ FGα

One thing to notice is that since F and G are Monads, we are guaranteed functions

µF :: FFα→ Fα

µG :: GGα→ Gα

If we just had a function

Υ :: GFα→ FGα,

then it seems like we’d be golden, since we could build the following pipeline:

µFG = FGFG -------→
Υ
FFGG ----------------------------→

µF
FGG ----------------------------→

µG
FG

39

Distributing S over R

And indeed, for the composition RS, there’s a natural way to get home when the

effects are inverted
Υ :: SRα→ RSα

Υ = . . .

It is so natural in fact, it is called a Distributive Natural Transformation, which

means it satisfies these laws (and a few others)

Υ (ηR •S S) = ηR S

Υ (ηSR) = ηS •R R

f •RS ΥM = Υ (f •SR M)

As suspected, any time there is a Distributive Υ :: GF→ FG with these properties, you

can be sure FG is a Monad1

1 Beck 1969
40

Distributing S over R

And indeed, for the composition RS, there’s a natural way to get home when the

effects are inverted
Υ :: SRα→ RSα

Υ = λMλg
{
f g | f ∈ M

}
It is so natural in fact, it is called a Distributive Natural Transformation, which

means it satisfies these laws (and a few others)

Υ (ηR •S S) = ηR S

Υ (ηSR) = ηS •R R

f •RS ΥM = Υ (f •SR M)

As suspected, any time there is a Distributive Υ :: GF→ FG with these properties, you

can be sure FG is a Monad1

1 Beck 1969
40

Distributing R over S

But for SR, we’d need to define a function in the opposite direction

Υ :: RSα→ SRα

Υ = . . .

It turns out that no such function can ever satisfy the Distributive laws2

2 Bumford 2022
41

Distributing R over S

But for SR, we’d need to define a function in the opposite direction

Υ :: RSα→ SRα

Υ = . . .

It turns out that no such function can ever satisfy the Distributive laws2

2 Bumford 2022
41

Dynamics

42

Dynamic binding

4. Polly left. She was tired.

5. A linguist left. She was tired.

6. Every linguist left. ??She was tired.

43

The basic idea3

g Pollyn left gn,p g a linguistn left

gn,e

gn,d

gn,c

gn,b

gn,a

Dref introduction is assignment modification.

Indefinites introduce drefs non-deterministically.

New drefs may (not) pan out downstream (cf. Stalnaker 1978).

3 Heim (1982), Barwise (1987), Groenendijk & Stokhof (1991), and Muskens (1996), etc.
44

Dynamics

Consider this (standard, DPL-ish) dynamic system:

�∃x� := λg
{
gx,d | d ∈ D

}
�φ∧ψ� := λg

{
h ∈ k[ψ] | k ∈ g[φ]

}
Consider what ‘effects’ are embodied in this system (in what ways is it ‘richer’ than

the basic grammar we began with?).

45

A dynamic monad

Can you devise an applicative type constructor F that does justice to these effects?

Can you devise a trivial way to ‘lift’ an a into an Da, and an ? recipe for composing

a a→ Db and an Da to give an Db?

RSa ::= g→ Sa

ηx := λg{x}

m?f := λg
⋃
x∈mg f xg

Da ::=

g→ S(a× g)

ηx :=

λg
{(
x,g

)}

m?f :=

λg
⋃
(x,h)∈mg f xh

Bonus food for thought: is D commutative? Does that seem important?

46

A dynamic monad

Can you devise an applicative type constructor F that does justice to these effects?

Can you devise a trivial way to ‘lift’ an a into an Da, and an ? recipe for composing

a a→ Db and an Da to give an Db?

RSa ::= g→ Sa

ηx := λg{x}

m?f := λg
⋃
x∈mg f xg

Da ::= g→ S(a× g)

ηx :=

λg
{(
x,g

)}

m?f :=

λg
⋃
(x,h)∈mg f xh

Bonus food for thought: is D commutative? Does that seem important?

46

A dynamic monad

Can you devise an applicative type constructor F that does justice to these effects?

Can you devise a trivial way to ‘lift’ an a into an Da, and an ? recipe for composing

a a→ Db and an Da to give an Db?

RSa ::= g→ Sa

ηx := λg{x}

m?f := λg
⋃
x∈mg f xg

Da ::= g→ S(a× g)

ηx := λg
{(
x,g

)}
m?f :=

λg
⋃
(x,h)∈mg f xh

Bonus food for thought: is D commutative? Does that seem important?

46

A dynamic monad

Can you devise an applicative type constructor F that does justice to these effects?

Can you devise a trivial way to ‘lift’ an a into an Da, and an ? recipe for composing

a a→ Db and an Da to give an Db?

RSa ::= g→ Sa

ηx := λg{x}

m?f := λg
⋃
x∈mg f xg

Da ::= g→ S(a× g)

ηx := λg
{(
x,g

)}
m?f := λg

⋃
(x,h)∈mg f xh

Bonus food for thought: is D commutative? Does that seem important?

46

Binding

Remember the binding operator defined earlier

.n :: R(e→ σ)→ e→ Rσ

.n := λmλx(λgmgn→x)ç ηx

With scope-taking in the grammar, we can make this a little simpler, since we can

build (e→ RFσ) functions directly[ˆbur]

.n := λfλx λg f xgn→x

Again, this operation is Effect-polymorphic; any Effect beginning with R, including

D ≡ RSW
.n :: (e→ Rσ)→ e→ Rσ

.n :: (e→ RSσ)→ e→ RSσ

.n :: (e→ RWσ)→ e→ RWσ

.n :: (e→ RSWσ)→ e→ RSWσ

.

47

Dynamic binding

In D, .-referents are stored for later

Dt

λg
{(

spokex,g0→x
)
| x ∈ ling

}

(e→ Dt)→ Dt

λf λg
⋃
x∈ling f xg

De

λg
{(
x,g

)
| x ∈ ling

}

e→ Dt

λx λg
{(

spokex,g0→x
)}

e→ Dt

λx λg
{(

spokex,g
)}

λx Dt

λg
{(

spokex,g
)}

t

spokex

? .0

η

48

Associativity

For any monadic T , the Associativity law guarantees that the two derivations below

are equivalent. It’s as if m had scoped out of Tb , without actually doing so

T c

(b→ T c)→ T c

T b

(a→ T b)→ T b

m : T a

a→ T b

λx T b

... x : a ...

b→ T c

λy T c

... y : b ...

T c

(a→ T c)→ T c

m : T a

a→ T c

λx T c

(b→ T c)→ T c

T b

... x : a ...

b→ T c

λy T c

... y : b ...

?

?

?

?

49

Dynamic binding via static conjunction

Dt = λg
{(

camex ∧ satx,g0→x
)
| x ∈ ling

}

(t→ Dt)→ Dt

Dt = λg
{(

camex,g0→x
)
| x ∈ ling

}

(e→ Dt)→ Dt

De

a.ling

e→ Dt

e→ Dt

λx Dt

t

camex

t→ Dt

λp Dt

(t→ Dt)→ Dt

Dt = λg
{(

satg0, g
)}

(e→ Dt)→ Dt

De

she0

e→ Dt

λy Dt

t

saty

t→ Dt

λq Dt

t

p ∧ q

?

? .0

η

?

?

η

η

50

Reassociating

Associativity (m? λana) ? o =m? (λana? o)

(a.ling0 ? λx η(camex)) ? λp (she0 ? λy η(saty)) ? λqη(p ∧ q)

a.ling0 ? λx (η(camex) ? λp (she0 ? λy η(saty)) ? λqη(p ∧ q))

51

Barwise, Jon. 1987. Noun phrases, generalized quantifiers, and anaphora. In Peter Gärdenfors (ed.), Generalized

Quantifiers, 1–29. Dordrecht: Reidel. https://doi.org/10.1007/978-94-009-3381-1_1.

Beck, Jon. 1969. Distributive laws. In Seminar on triples and categorical homology theory, 119–140.

Bumford, Dylan. 2022. Composition under distributive natural transformations: or, when predicate abstraction is

impossible. Journal of Logic, Language and Information. 1–21.

Charlow, Simon. 2019. A modular theory of pronouns and binding. Unpublished ms., Rutgers University.

https://ling.auf.net/lingbuzz/003720.

Groenendijk, Jeroen & Martin Stokhof. 1991. Dynamic predicate logic. Linguistics and Philosophy 14(1). 39–100.

https://doi.org/10.1007/BF00628304.

Heim, Irene. 1982. The semantics of definite and indefinite noun phrases. University of Massachusetts, Amherst

Ph.D. thesis. https://semanticsarchive.net/Archive/Tk0ZmYyY/.

Kiselyov, Oleg. 2015. Applicative abstract categorial grammars. In Makoto Kanazawa, Lawrence S. Moss &

Valeria de Paiva (eds.), NLCS’15. Third workshop on natural language and computer science, vol. 32 (EPiC

Series), 29–38.

McBride, Conor & Ross Paterson. 2008. Applicative programming with effects. Journal of Functional Programming

18(1). 1–13. https://doi.org/10.1017/S0956796807006326.

Muskens, Reinhard. 1996. Combining Montague semantics and discourse representation. Linguistics and

Philosophy 19(2). 143–186. https://doi.org/10.1007/BF00635836.

52

https://doi.org/10.1007/978-94-009-3381-1_1
https://ling.auf.net/lingbuzz/003720
https://doi.org/10.1007/BF00628304
https://semanticsarchive.net/Archive/Tk0ZmYyY/
https://doi.org/10.1017/S0956796807006326
https://doi.org/10.1007/BF00635836

Stalnaker, Robert. 1978. Assertion. In Peter Cole (ed.), Pragmatics, vol. 9 (Syntax and Semantics), 315–332. New

York: Academic Press.

53

