
Effectful composition in natural language semantics

Ups and downs: adjunctions, (co)monads, and association with effects

Dylan Bumford (UCLA) Simon Charlow (Rutgers)

ESSLLI 2022, NUI Galway

1

Recap

2

Denotations via functors

Expression Type Denotation

no cat Ce ::= (e→ t)→ t λc.¬∃x.catx ∧ cx
the cat Me ::= e | # x if cat = {x} else #

Sassy, a cat We ::= e× t ⟨s, cats⟩
she Re ::= r→ e λg.g0
which cat Se ::= {e} {x | catx}
SASSY Fe ::= e× {e} ⟨s, {x | x ∈ De}⟩
a cat De ::= s→ {e× s} λs.{⟨x, s++x⟩ | catx}
.

Meditate on the hoops you’d need to jump through to develop a theory of grammar

in the standard mold that could handle all these effects (and more).

3

Ascending typeclasses

We have explored a hierarchy of abstractions for modeling linguistic side effects:

-- Functors: as many layers as effectful things

class Functor f where

fmap :: (a -> b) -> f a -> f b

-- Applicatives: contexts can be merged

class Functor f => Applicative f where

pure :: a -> f a

(<*>) :: f (a -> b) -> f a -> f b

-- Monads: higher-order contexts can be flattened

class Applicative f => Monad f where

join :: f (f a) -> f a -- or

(>>=) :: f a -> (a -> f b) -> f b

Type constructor

Functor

Applicative

Monad

4

Ascending typeclasses

We have explored a hierarchy of abstractions for modeling linguistic side effects:

-- Functors: as many layers as effectful things

class Functor f where

fmap :: (a -> b) -> f a -> f b

-- Applicatives: contexts can be merged

class Functor f => Applicative f where

pure :: a -> f a

(<*>) :: f (a -> b) -> f a -> f b

-- Monads: higher-order contexts can be flattened

class Applicative f => Monad f where

join :: f (f a) -> f a -- or

(>>=) :: f a -> (a -> f b) -> f b

Type constructor

Functor

Applicative

Monad

4

Some examples

Here’s a type constructor that’s not a functor: (where’s •?)

Xa ::= a→ r

Here’s a functor that’s not an applicative: (where’s η? where’s ⊛?)

Ya ::= a× e

Here’s a couple applicatives that (probably) aren’t monads: (where’s µ?)

SRa ::= {r→ a}

WRa ::= (r→ a)×m (m a monoid)

5

Implemented by extending type-driven semantic parsing

if a · b ⇒ (f , c), then


F a · b ⇒ (↑Rf lr := (λl ′.f l′ r) • l , F c)
a · F b ⇒ (↑Lf lr := (λr ′.f lr ′) • r , F c)

F a · F b ⇒ (A f lr := f • l⊛ r , F c)

To these binary rules, we can add monadic join-ing:

if a · b ⇒ (f ,MMc), then a · b ⇒ (J f lr := µ(f lr),M c)

6

Functors compose

(•)((•)f) :: F (Ga)→ F (Gb)

(•)f :: Ga→Gb

f :: a→ b

•

•

7

Applicative functors compose

η(ηx) :: F (Ga)

Ga

x :: a

η

η

(η⊛)⊛m⊛n :: F (Gb)

F (Ga)→ F (Gb)

F (Ga→Gb)

m :: F (G(a→ b)) F (G(a→ b))→ F (Ga→Gb)

F (G(a→ b)→Ga→Gb)

⊛
G(a→ b)→Ga→Gb

n :: F (Ga)

⊛

⊛

η

8

Monads don’t always compose

η(ηx) :: FGa

Ga

x :: a

η

η

FGa

FGGa

FFGGa

FGFGb

m :: FGa FGa→ FGFGb

Ga→GFGb

f :: a→ FGb

FGGa→ FGa

µ :: GGa→Ga

µ

F(Υ)?

•

•

•

9

Monads don’t always compose

η(ηx) :: FGa

Ga

x :: a

η

η

FGa

FGGa

FFGGa

FGFGb

m :: FGa FGa→ FGFGb

Ga→GFGb

f :: a→ FGb

FGGa→ FGa

µ :: GGa→Ga

µ

F(Υ)?

•

•

•

9

Monads don’t always compose

η(ηx) :: FGa

Ga

x :: a

η

η

FGa

FGGa

FFGGa

FGFGb

m :: FGa FGa→ FGFGb

Ga→GFGb

f :: a→ FGb

FGGa→ FGa

µ :: GGa→Ga

µ

F(Υ)?

•

•

•

9

Monads don’t always compose

η(ηx) :: FGa

Ga

x :: a

η

η

FGa

FGGa

FFGGa

FGFGb

m :: FGa FGa→ FGFGb

Ga→GFGb

f :: a→ FGb

FGGa→ FGa

µ :: GGa→Ga

µ

F(Υ)?

•

•

•

9

Monads don’t always compose

η(ηx) :: FGa

Ga

x :: a

η

η

FGa

FGGa

FFGGa

FGFGb

m :: FGa FGa→ FGFGb

Ga→GFGb

f :: a→ FGb

FGGa→ FGa

µ :: GGa→Ga

µ

F(Υ)?

•

•

•

9

. . . BUT!

Transformers (Liang, Hudak & Jones 1995). For any monadic (M,η,⋆):

ReaderT: adding env-sensitivity

□ RTMa ::= r→Ma
□ ηx := λr .ηx
□ m⋆f = λr .mr ⋆ λx.f xr

StateT: adding state

□ STMa ::= s→M(a× s)

□ ηx = λs.η(x, s)
□ m⋆f = λs.ms ⋆ λ(x, s′).f xs′

ContT: adding scope

□ CTMa ::= (a→M t)→M t

□ ηx = λk.kx
□ m⋆f = λk.m(λx.f xk)

The Identity monad

□ Ia ::= a
□ ηa = a
□ m⋆f = f m

It’s spectacular, and a bit eerie, to notice that CT differs from C only in its monadic

return type (Wadler 1994, Charlow 2014).

10

. . . BUT!

Transformers (Liang, Hudak & Jones 1995). For any monadic (M,η,⋆):

ReaderT: adding env-sensitivity

□ RTMa ::= r→Ma
□ ηx := λr .ηx
□ m⋆f = λr .mr ⋆ λx.f xr

StateT: adding state

□ STMa ::= s→M(a× s)

□ ηx = λs.η(x, s)
□ m⋆f = λs.ms ⋆ λ(x, s′).f xs′

ContT: adding scope

□ CTMa ::= (a→M t)→M t

□ ηx = λk.kx
□ m⋆f = λk.m(λx.f xk)

The Identity monad

□ Ia ::= a
□ ηa = a
□ m⋆f = f m

It’s spectacular, and a bit eerie, to notice that CT differs from C only in its monadic

return type (Wadler 1994, Charlow 2014).

10

. . . BUT!

Transformers (Liang, Hudak & Jones 1995). For any monadic (M,η,⋆):

ReaderT: adding env-sensitivity

□ RTMa ::= r→Ma
□ ηx := λr .ηx
□ m⋆f = λr .mr ⋆ λx.f xr

StateT: adding state

□ STMa ::= s→M(a× s)

□ ηx = λs.η(x, s)
□ m⋆f = λs.ms ⋆ λ(x, s′).f xs′

ContT: adding scope

□ CTMa ::= (a→M t)→M t

□ ηx = λk.kx
□ m⋆f = λk.m(λx.f xk)

The Identity monad

□ Ia ::= a
□ ηa = a
□ m⋆f = f m

It’s spectacular, and a bit eerie, to notice that CT differs from C only in its monadic

return type (Wadler 1994, Charlow 2014).

10

. . . BUT!

Transformers (Liang, Hudak & Jones 1995). For any monadic (M,η,⋆):

ReaderT: adding env-sensitivity

□ RTMa ::= r→Ma
□ ηx := λr .ηx
□ m⋆f = λr .mr ⋆ λx.f xr

StateT: adding state

□ STMa ::= s→M(a× s)

□ ηx = λs.η(x, s)
□ m⋆f = λs.ms ⋆ λ(x, s′).f xs′

ContT: adding scope

□ CTMa ::= (a→M t)→M t

□ ηx = λk.kx
□ m⋆f = λk.m(λx.f xk)

The Identity monad

□ Ia ::= a
□ ηa = a
□ m⋆f = f m

It’s spectacular, and a bit eerie, to notice that CT differs from C only in its monadic

return type (Wadler 1994, Charlow 2014).

10

The higher-order

11

Composition with applicatives and monads

Days 3 and 4: applicatives/monads for avoiding/escaping the higher-order. . .

-- Applicatives: contexts can be merged

class Functor f => Applicative f where

pure :: a -> f a

(<*>) :: f (a -> b) -> f a -> f b

-- Monads: higher-order contexts can be flattened

class Applicative f => Monad f where

join :: f (f a) -> f a -- or

(>>=) :: f a -> (a -> f b) -> f b

12

Higher-order effects: Writing

saw = [("saw" , TV, E :-> E :-> T)]

maling = [("Mary--a ling", DP, effW T E)]

sacat = [("Sassy--a cat", DP, effW T E)]

saw :: e→ e→ t

Mary, a linguist :: We

Sassy, a cat :: We

GHCi> parse $ [maling, saw, sacat]

.

(<*>) (fmap (\l -> (\r -> r l)) <m, a ling>) (fmap saw <s, a cat>) : W t

= ⟨liftm, lingm⟩ ⊛ ⟨saws, cats⟩
= ⟨sawsm, lingm∧ cats⟩

A, <

<m, a ling> : W e

Lex

"Mary-a linguist"

fmap saw <s, a cat> : W (e -> t)

⟨saws, cats⟩

↑L, >

saw : e -> e -> t

Lex

"saw"

Sassy, a cat : W e

Lex

"Sassy-a cat"

.

13

Higher-order effects: Writing

saw = [("saw" , TV, E :-> E :-> T)]

maling = [("Mary--a ling", DP, effW T E)]

sacat = [("Sassy--a cat", DP, effW T E)]

saw :: e→ e→ t

Mary, a linguist :: We

Sassy, a cat :: We

GHCi> parse $ [maling, saw, sacat]

.

(<*>) (fmap (\l -> (\r -> r l)) <m, a ling>) (fmap saw <s, a cat>) : W t

= ⟨liftm, lingm⟩ ⊛ ⟨saws, cats⟩
= ⟨sawsm, lingm∧ cats⟩

A, <

<m, a ling> : W e

Lex

"Mary-a linguist"

fmap saw <s, a cat> : W (e -> t)

⟨saws, cats⟩
↑L, >

saw : e -> e -> t

Lex

"saw"

Sassy, a cat : W e

Lex

"Sassy-a cat"

.

13

Higher-order effects: Writing

saw = [("saw" , TV, E :-> E :-> T)]

maling = [("Mary--a ling", DP, effW T E)]

sacat = [("Sassy--a cat", DP, effW T E)]

saw :: e→ e→ t

Mary, a linguist :: We

Sassy, a cat :: We

GHCi> parse $ [maling, saw, sacat]

.

(<*>) (fmap (\l -> (\r -> r l)) <m, a ling>) (fmap saw <s, a cat>) : W t

= ⟨liftm, lingm⟩ ⊛ ⟨saws, cats⟩

= ⟨sawsm, lingm∧ cats⟩

A, <

<m, a ling> : W e

Lex

"Mary-a linguist"

fmap saw <s, a cat> : W (e -> t)

⟨saws, cats⟩
↑L, >

saw : e -> e -> t

Lex

"saw"

Sassy, a cat : W e

Lex

"Sassy-a cat"

.

13

Higher-order effects: Writing

saw = [("saw" , TV, E :-> E :-> T)]

maling = [("Mary--a ling", DP, effW T E)]

sacat = [("Sassy--a cat", DP, effW T E)]

saw :: e→ e→ t

Mary, a linguist :: We

Sassy, a cat :: We

GHCi> parse $ [maling, saw, sacat]

.

(<*>) (fmap (\l -> (\r -> r l)) <m, a ling>) (fmap saw <s, a cat>) : W t

= ⟨liftm, lingm⟩ ⊛ ⟨saws, cats⟩
= ⟨sawsm, lingm∧ cats⟩

A, <

<m, a ling> : W e

Lex

"Mary-a linguist"

fmap saw <s, a cat> : W (e -> t)

⟨saws, cats⟩
↑L, >

saw : e -> e -> t

Lex

"saw"

Sassy, a cat : W e

Lex

"Sassy-a cat"

.

13

Higher-order effects: Writing

fmap (\x -> fmap (\f -> f x) (fmap saw <s, a cat>)) <m, a ling> : W (W t)

(λx.(liftx) • ⟨saws, cats⟩) • ⟨m, lingm⟩
(λx.⟨sawsx, cats⟩) • ⟨m, lingm⟩

⟨⟨sawsm, cats⟩, lingm⟩

↑R, ↑L, <

<m, a ling> : W e

Lex

"Mary-a linguist"

fmap saw <s, a cat> : W (e -> t)

↑L, >

saw : e -> e -> t

Lex

"saw"

<s, a cat> : W e

Lex

"Sassy-a cat"

14

Higher-order effects: Writing

fmap (\x -> fmap (\f -> f x) (fmap saw <s, a cat>)) <m, a ling> : W (W t)

(λx.(liftx) • ⟨saws, cats⟩) • ⟨m, lingm⟩

(λx.⟨sawsx, cats⟩) • ⟨m, lingm⟩
⟨⟨sawsm, cats⟩, lingm⟩

↑R, ↑L, <

<m, a ling> : W e

Lex

"Mary-a linguist"

fmap saw <s, a cat> : W (e -> t)

↑L, >

saw : e -> e -> t

Lex

"saw"

<s, a cat> : W e

Lex

"Sassy-a cat"

14

Higher-order effects: Writing

fmap (\x -> fmap (\f -> f x) (fmap saw <s, a cat>)) <m, a ling> : W (W t)

(λx.(liftx) • ⟨saws, cats⟩) • ⟨m, lingm⟩
(λx.⟨sawsx, cats⟩) • ⟨m, lingm⟩

⟨⟨sawsm, cats⟩, lingm⟩

↑R, ↑L, <

<m, a ling> : W e

Lex

"Mary-a linguist"

fmap saw <s, a cat> : W (e -> t)

↑L, >

saw : e -> e -> t

Lex

"saw"

<s, a cat> : W e

Lex

"Sassy-a cat"

14

Higher-order effects: Writing

fmap (\x -> fmap (\f -> f x) (fmap saw <s, a cat>)) <m, a ling> : W (W t)

(λx.(liftx) • ⟨saws, cats⟩) • ⟨m, lingm⟩
(λx.⟨sawsx, cats⟩) • ⟨m, lingm⟩

⟨⟨sawsm, cats⟩, lingm⟩
↑R, ↑L, <

<m, a ling> : W e

Lex

"Mary-a linguist"

fmap saw <s, a cat> : W (e -> t)

↑L, >

saw : e -> e -> t

Lex

"saw"

<s, a cat> : W e

Lex

"Sassy-a cat"

14

Higher-order effects: Writing

Recall that µW ⟨⟨a,p⟩, q⟩ = ⟨a,q ∧ p⟩

join (fmap (\a -> fmap (\a1 -> a1 a) (fmap saw <s, a cat>)) <m, a ling>) : W t

= µ ⟨⟨sawsm, cats⟩, lingm⟩
= ⟨sawsm, lingm∧ cats⟩

J, ↑R, ↑L, <

<m, a ling> : W e

Lex

"Mary-a ling"

fmap saw <s, a cat> : W (e -> t)

↑L, >

saw : e -> e -> t

Lex

"saw"

<s, a cat> : W e

Lex

"Sassy-a cat"

15

Higher-order effects: Writing

Recall that µW ⟨⟨a,p⟩, q⟩ = ⟨a,q ∧ p⟩

join (fmap (\a -> fmap (\a1 -> a1 a) (fmap saw <s, a cat>)) <m, a ling>) : W t

= µ ⟨⟨sawsm, cats⟩, lingm⟩

= ⟨sawsm, lingm∧ cats⟩

J, ↑R, ↑L, <

<m, a ling> : W e

Lex

"Mary-a ling"

fmap saw <s, a cat> : W (e -> t)

↑L, >

saw : e -> e -> t

Lex

"saw"

<s, a cat> : W e

Lex

"Sassy-a cat"

15

Higher-order effects: Writing

Recall that µW ⟨⟨a,p⟩, q⟩ = ⟨a,q ∧ p⟩

join (fmap (\a -> fmap (\a1 -> a1 a) (fmap saw <s, a cat>)) <m, a ling>) : W t

= µ ⟨⟨sawsm, cats⟩, lingm⟩
= ⟨sawsm, lingm∧ cats⟩

J, ↑R, ↑L, <

<m, a ling> : W e

Lex

"Mary-a ling"

fmap saw <s, a cat> : W (e -> t)

↑L, >

saw : e -> e -> t

Lex

"saw"

<s, a cat> : W e

Lex

"Sassy-a cat"

15

Higher-order effects: Just an annoying detour?

join (fmap (\a -> fmap (\f -> f a) (fmap saw <s, a cat>)) <m, a ling>) : W t

= ⟨sawsm, lingm∧ cats⟩
J, ↑R, ↑L, <

<m, a ling> : W e fmap saw <s, a cat> : W (e -> t)

(<*>) (fmap (\l -> (\r -> r l)) <m, a ling>) (fmap saw <s, a cat>) : W t

= ⟨sawsm, lingm∧ cats⟩
A, <

<m, a ling> : W e fmap saw <s, a cat> : W (e -> t)

16

Higher-order effects: Continuations

Let’s try another one.

saw = [("saw" , TV, E :-> E :-> T)]

someone = [("someone" , DP, effC T T E)]

everyone = [("everyone", DP, effC T T E)]

saw :: e→ e→ t

someone :: Ce

everyone :: Ce

GHCi> parse $ [someone, saw, everyone]

(<*>) (fmap (\x -> (\f -> f x)) someone) (fmap saw everyone) : C t

= (λk.so(λy.k(lifty)))⊛ (λk.eo(λy.k(sawx)))

= λk.so(λy.eo(λx.k(sawxy)))

A, <

someone : C e

Lex

"someone"

fmap saw everyone : C (e -> t)

λk.eo(λx.k(sawx))

↑L, >

everyone : C e

Lex

"saw"

C e

Lex

"everyone"
17

Higher-order effects: Continuations

Let’s try another one.

saw = [("saw" , TV, E :-> E :-> T)]

someone = [("someone" , DP, effC T T E)]

everyone = [("everyone", DP, effC T T E)]

saw :: e→ e→ t

someone :: Ce

everyone :: Ce

GHCi> parse $ [someone, saw, everyone]

(<*>) (fmap (\x -> (\f -> f x)) someone) (fmap saw everyone) : C t

= (λk.so(λy.k(lifty)))⊛ (λk.eo(λy.k(sawx)))

= λk.so(λy.eo(λx.k(sawxy)))

A, <

someone : C e

Lex

"someone"

fmap saw everyone : C (e -> t)

λk.eo(λx.k(sawx))

↑L, >

everyone : C e

Lex

"saw"

C e

Lex

"everyone"
17

Higher-order effects: Continuations

Let’s try another one.

saw = [("saw" , TV, E :-> E :-> T)]

someone = [("someone" , DP, effC T T E)]

everyone = [("everyone", DP, effC T T E)]

saw :: e→ e→ t

someone :: Ce

everyone :: Ce

GHCi> parse $ [someone, saw, everyone]

(<*>) (fmap (\x -> (\f -> f x)) someone) (fmap saw everyone) : C t

= (λk.so(λy.k(lifty)))⊛ (λk.eo(λy.k(sawx)))

= λk.so(λy.eo(λx.k(sawxy)))

A, <

someone : C e

Lex

"someone"

fmap saw everyone : C (e -> t)

λk.eo(λx.k(sawx))

↑L, >

everyone : C e

Lex

"saw"

C e

Lex

"everyone"
17

Higher-order effects: Continuations

Let’s try another one.

saw = [("saw" , TV, E :-> E :-> T)]

someone = [("someone" , DP, effC T T E)]

everyone = [("everyone", DP, effC T T E)]

saw :: e→ e→ t

someone :: Ce

everyone :: Ce

GHCi> parse $ [someone, saw, everyone]

(<*>) (fmap (\x -> (\f -> f x)) someone) (fmap saw everyone) : C t

= (λk.so(λy.k(lifty)))⊛ (λk.eo(λy.k(sawx)))

= λk.so(λy.eo(λx.k(sawxy)))

A, <

someone : C e

Lex

"someone"

fmap saw everyone : C (e -> t)

λk.eo(λx.k(sawx))

↑L, >

everyone : C e

Lex

"saw"

C e

Lex

"everyone"
17

Higher-order effects: Continuations

fmap (\a -> fmap (\a1 -> a1 a) (fmap saw everyone)) someone : C (C t)

= (λk.so(λy.k((lifty) • (λc.eo(λx.c (sawx))))))

= (λk.so(λy.k(λc.eo(λx.c (sawxy)))))

↑R, ↑L, <

someone : C e

Lex

"someone"

fmap saw everyone : C (e -> t)

λk.eo(λx.k(sawx))

↑L, >

saw : e -> e -> t

Lex

"saw"

everyone : C e

Lex

"everyone"

18

Higher-order effects: Continuations

fmap (\a -> fmap (\a1 -> a1 a) (fmap saw everyone)) someone : C (C t)

= (λk.so(λy.k((lifty) • (λc.eo(λx.c (sawx))))))

= (λk.so(λy.k(λc.eo(λx.c (sawxy)))))

↑R, ↑L, <

someone : C e

Lex

"someone"

fmap saw everyone : C (e -> t)

λk.eo(λx.k(sawx))

↑L, >

saw : e -> e -> t

Lex

"saw"

everyone : C e

Lex

"everyone"

18

Higher-order effects: Continuations

fmap (\a -> fmap (\a1 -> a1 a) (fmap saw everyone)) someone : C (C t)

= (λk.so(λy.k((lifty) • (λc.eo(λx.c (sawx))))))

= (λk.so(λy.k(λc.eo(λx.c (sawxy)))))

↑R, ↑L, <

someone : C e

Lex

"someone"

fmap saw everyone : C (e -> t)

λk.eo(λx.k(sawx))

↑L, >

saw : e -> e -> t

Lex

"saw"

everyone : C e

Lex

"everyone"

18

Higher-order effects: Continuations

Recall µCM = λk.M (λm.mk)

join (fmap (\a -> fmap (\a1 -> a1 a) (fmap saw everyone)) someone) : C t

= µ(λk.so(λy.k(λc.eo(λx.c (sawxy)))))

= λk.so(λy.eo(λx.k(sawxy)))

J, ↑R, ↑L, <

someone : C e

Lex

"someone"

fmap saw everyone : C (e -> t)

λk.eo(λx.k(sawx))

↑L, >

saw : e -> e -> t

Lex

"saw"

everyone : C e

Lex

"everyone"

19

Higher-order effects: Continuations

Recall µCM = λk.M (λm.mk)

join (fmap (\a -> fmap (\a1 -> a1 a) (fmap saw everyone)) someone) : C t

= µ(λk.so(λy.k(λc.eo(λx.c (sawxy)))))

= λk.so(λy.eo(λx.k(sawxy)))

J, ↑R, ↑L, <

someone : C e

Lex

"someone"

fmap saw everyone : C (e -> t)

λk.eo(λx.k(sawx))

↑L, >

saw : e -> e -> t

Lex

"saw"

everyone : C e

Lex

"everyone"

19

Higher-order effects: Continuations

Recall µCM = λk.M (λm.mk)

join (fmap (\a -> fmap (\a1 -> a1 a) (fmap saw everyone)) someone) : C t

= µ(λk.so(λy.k(λc.eo(λx.c (sawxy)))))

= λk.so(λy.eo(λx.k(sawxy)))

J, ↑R, ↑L, <

someone : C e

Lex

"someone"

fmap saw everyone : C (e -> t)

λk.eo(λx.k(sawx))

↑L, >

saw : e -> e -> t

Lex

"saw"

everyone : C e

Lex

"everyone"

19

Higher-order effects: Just an annoying detour

(<*>) (fmap (\x -> (\f -> f x)) someone) (fmap saw everyone) : C t

= λk.so(λy.eo(λx.k(sawxy)))

A, <

someone : C e fmap saw everyone : C (e -> t)

join (fmap (\a -> fmap (\a1 -> a1 a) (fmap saw everyone)) someone) : C t

= λk.so(λy.eo(λx.k(sawxy)))

J, ↑R, ↑L, <

someone : C e fmap saw everyone : C (e -> t)

▶ Sad

20

Higher-order meanings: Continuations

But there is yet another parse:

fmap (\v -> fmap v someone) (fmap saw everyone) : C (C t)

(λP.P • so) • (λk.eo(λx.k(sawx)))

λk.eo(λx.k((sawx) • so))

λk.eo(λx.k(λc.so(λy.c (sawxy))))

↑L, ↑R, <

someone : C e

Lex

"someone"

fmap saw everyone : C (e -> t)

λk.eo(λx.k(sawx))

↑L, >

saw : e -> e -> t

Lex

"saw"

everyone : C e

Lex

"everyone"

21

Higher-order meanings: Continuations

But there is yet another parse:

fmap (\v -> fmap v someone) (fmap saw everyone) : C (C t)

(λP.P • so) • (λk.eo(λx.k(sawx)))

λk.eo(λx.k((sawx) • so))

λk.eo(λx.k(λc.so(λy.c (sawxy))))

↑L, ↑R, <

someone : C e

Lex

"someone"

fmap saw everyone : C (e -> t)

λk.eo(λx.k(sawx))

↑L, >

saw : e -> e -> t

Lex

"saw"

everyone : C e

Lex

"everyone"

21

Higher-order meanings: Continuations

But there is yet another parse:

fmap (\v -> fmap v someone) (fmap saw everyone) : C (C t)

(λP.P • so) • (λk.eo(λx.k(sawx)))

λk.eo(λx.k((sawx) • so))

λk.eo(λx.k(λc.so(λy.c (sawxy))))

↑L, ↑R, <

someone : C e

Lex

"someone"

fmap saw everyone : C (e -> t)

λk.eo(λx.k(sawx))

↑L, >

saw : e -> e -> t

Lex

"saw"

everyone : C e

Lex

"everyone"

21

Higher-order meanings: Continuations

But there is yet another parse:

fmap (\v -> fmap v someone) (fmap saw everyone) : C (C t)

(λP.P • so) • (λk.eo(λx.k(sawx)))

λk.eo(λx.k((sawx) • so))

λk.eo(λx.k(λc.so(λy.c (sawxy))))

↑L, ↑R, <

someone : C e

Lex

"someone"

fmap saw everyone : C (e -> t)

λk.eo(λx.k(sawx))

↑L, >

saw : e -> e -> t

Lex

"saw"

everyone : C e

Lex

"everyone"

21

Higher-order meanings: Continuations

And finally, recalling once more: µCM = λk.M (λm.mk)

join (fmap (\v -> fmap v someone) (fmap saw everyone)) : C t

µ(λk.eo(λx.k(λc.so(λy.c (sawxy)))))

λk.eo(λx.so(λy.k(sawxy)))

↑L, ↑R, <

someone : C e

Lex

"someone"

fmap saw everyone : C (e -> t)

λk.eo(λx.k(sawx))

↑L, >

saw : e -> e -> t

Lex

"saw"

everyone : C e

Lex

"everyone"

22

Higher-order meanings: Continuations

And finally, recalling once more: µCM = λk.M (λm.mk)

join (fmap (\v -> fmap v someone) (fmap saw everyone)) : C t

µ(λk.eo(λx.k(λc.so(λy.c (sawxy)))))

λk.eo(λx.so(λy.k(sawxy)))

↑L, ↑R, <

someone : C e

Lex

"someone"

fmap saw everyone : C (e -> t)

λk.eo(λx.k(sawx))

↑L, >

saw : e -> e -> t

Lex

"saw"

everyone : C e

Lex

"everyone"

22

Higher-order meanings: Continuations

And finally, recalling once more: µCM = λk.M (λm.mk)

join (fmap (\v -> fmap v someone) (fmap saw everyone)) : C t

µ(λk.eo(λx.k(λc.so(λy.c (sawxy)))))

λk.eo(λx.so(λy.k(sawxy)))

↑L, ↑R, <

someone : C e

Lex

"someone"

fmap saw everyone : C (e -> t)

λk.eo(λx.k(sawx))

↑L, >

saw : e -> e -> t

Lex

"saw"

everyone : C e

Lex

"everyone"

22

Higher-order meanings: Not just a detour!

(<*>) (fmap (\x -> (\f -> f x)) someone) (fmap saw everyone) : C t

= λk.so(λy.eo(λx.k(sawxy)))

A, <

someone : C e fmap saw everyone : C (e -> t)

join (fmap (\v -> fmap v someone) (fmap saw everyone)) : C t

λk.eo(λx.so(λy.k(sawxy)))

J, ↑R, ↑L, <

someone : C e fmap saw everyone : C (e -> t)

▶ The parser has discovered inverse scope!

23

Inverse scope via functoriality

The inverse scope reading here relies crucially on fmapping one program inside the

other

However briefly, you must maintain a moment of higher-order quantification

(quantification over programs), unlike the A,< derivation, where quantification at

every step is over simple values

May be dispreferred relative to regular order (cf. Partee & Rooth 1983)

Can certainly be distinguished from regular order; beneficial for xover etc1

Also it’s worth noting that this higher-order route to inverse scope is more powerful

than (less parsimoniously) permitting both orders of C’s applicative ⊛

1. Two people sent a letter to every student. ∀≫ 2≫ ∃

1 Shan & Barker 2006, Barker & Shan 2008, 2014, Bumford & Charlow 2022
24

Percolation

With what we have so far, it’s easy to see that an effectful type anywhere in a

derivation taints everything above it (the effect percolates upward)

Particularly eyebrow-raising perhaps is the case of quantificational expressions

Ct

meow • (λc.¬∃x.catx ∧ cx)
= λc.¬∃x.catx ∧ c (meowx)

Ce

λc.¬∃x.catx ∧ cx
no cat

Ce→ Ct

λE.meow • E

e→ t

meow

meowed

•

25

Association with effects

In some cases, there are expressions that associate with effects, taking an effectful

meaning as argument and returning something pure

Expression Type Denotation

only F(e→ t)→ e→ t λ⟨P,C⟩λx.{Q ∈ C | Qx} = {P}

e→ t

λx.{seez | z ∈ De,seezx} = {seem}

F(e→ t)→ e→ t

only

F(e→ t)

Fe→ F(e→ t)

e→ e→ t

saw

Fe

MARY•

26

Types ending in t

In other cases, a truth value may be extracted from an effectful meaning in virtue of

some broader linking hypothesis about how the data structure relates to truth.

These extraction procedures are sometimes called closure, or lowering, operators,

which we might write ■H :: Ht→ t.

A sentence with an environmental dependency is true if it is true in the

utterance context (cf. Kaplan 1979)

■R = λv.v gc
A sentence with a supplement is true only if both of its dimensions are true

(cf. Boër & Lycan 1976)

■W = λ⟨p,q⟩.p ∧ q
A sentence with a presupposition is true only if it is defined and not false

(cf. the A-ssertion operator of trivalent logics like Beaver & Krahmer 2001)

■M = λm.false if m = # else m

A sentence that evokes many alternatives is true only if one of them is true

(cf. Existential Closure, as in Kratzer & Shimoyama 2002)

■S = λS.
∨
S

27

Closing over continuations

For our scope-taking effect C, the standard closure operator is to run the denotation

with a trivial identity continuation (Barker 2002): ■C = λT .T id

t

¬∃x.catx ∧ id(meowx)

= ¬∃x.catx ∧meowx

Ct→ t

λT .T id

■C

Ct

meow • (λc.¬∃x.catx ∧ cx)
= λc.¬∃x.catx ∧ c (meowx)

Ce

λc.¬∃x.catx ∧ cx
no cat

Ce→ Ct

λE.meow • E

e→ t

meow

meowed

•

28

Obligatory association?

Suppose you have an operator that ‘associates with’/discharges (applicative) effects:

↓ : F a→ a

Possible things that might function in this way:

Pronouns: binders

Alternatives: ∃-closure

Focus: focus-sensitive adverbs

Do we predict that association with ↓ will be obligatory?

29

Non-obligatory association

We do not! Any applicative F allows ↓ to be ignored:

F a

F (F a)→ F a

F (F a→ a)

↓ : F a→ a

F (F a)

m : F a

⊛

η

η

Beginning with {x | x ∈ relative}, applying η ‘inside’ yields {{x} | x ∈ relative}.
When ∃-closure is folded in, it can target the inner alternatives, sparing the outer.

2. If [∃ a rich relative of mine dies] I’ll inherit a house.

You might ‘alternatively’ take if (and might) to be alternative-associating in order to capture

simplification of disjunctive antecedents (and free choice). See Alonso-Ovalle 2006, Aloni 2007.
30

The systematicity of very long-distance ‘projection’

Functors in general are very useful for percolating effects upward, while leaving the

effectful thing in place. And there is a notable tendency of effectful stuff to float up:

3. If [a rich relative of mine dies] I’ll inherit a house.

4. Which linguist will be offended if [we invite which philosopher]?

5. [[Dono hon-o yonda] kodomo]-mo yoku nemutta.

which book-acc read child mo well slept

6. John only gripes when [MARY leaves the lights on].

7. John doesn’t gripe when [Mary, a talented linguist, leaves the lights on].

8. John doesn’t gripe when [the King of France leaves the lights on].

9. John doesn’t gripe when [she leaves the lights on].

31

Higher-order meanings for selective association

Cross-categorial and higher-order variables (cf. Gardent 1991, Hardt 1993, 1999):

10. . . . And buy the car she0 did1.

11. Johni deposited [hisi paycheck]j . Billk spent itj .

12. Maryi [likes heri paper]j . Samk doesj too.

Indefinites: potentially selective projection of existential force out of islands.

13. If a persuasive lawyer visits a rich relative of mine, I’ll inherit a house.

Focus: potentially selective association of foci with focus-sensitive ops:

14. John only introduced BILL to Mary. He also only introduced BILL to SUE.

15. Last month, John only drank BEER. He has also only drunk WINE.

Charlow 2014, 2019, 2020
32

Another way down: adjunctions

33

Nondeterministic state

Dynamic semantics as nondeterministic state: reading, writing, nondeterminism.

Da ::=

s→ {a× s}

ηx :=

λs.{(x, s)}

m⋆f :=

λs.
⋃
(x,s′)∈ms f xs′

34

Nondeterministic state

Dynamic semantics as nondeterministic state: reading, writing, nondeterminism.

Da ::= s→ {a× s}

ηx :=

λs.{(x, s)}

m⋆f :=

λs.
⋃
(x,s′)∈ms f xs′

34

Nondeterministic state

Dynamic semantics as nondeterministic state: reading, writing, nondeterminism.

Da ::= s→ {a× s}

ηx := λs.{(x, s)}

m⋆f :=

λs.
⋃
(x,s′)∈ms f xs′

34

Nondeterministic state

Dynamic semantics as nondeterministic state: reading, writing, nondeterminism.

Da ::= s→ {a× s}

ηx := λs.{(x, s)}

m⋆f := λs.
⋃
(x,s′)∈ms f xs′

34

Not as simple as it could be

Input, Output, Nondeterminism. Anything that does one does all, even if trivially.

□ she0 := λs.{(s0, s)}

□ mary+ := λs.{(m, s++m)}

□ someone := λs.{(x, s) | x :: e}

Another sort of generalization to the worst case.

35

Semantic primitives?

State implicates reading and writing actions (cf. Shan 2001):

Ra ::= s→ a Wa ::= (a,s)

R and W are adjoint functors (in particular, W ⊣ R):

F a→ b ≃ a→Gb
Wa→ b ≃ a→ Rb

(a,s)→ b ≃ a→ s→ b

36

W ⊣ R

In fact, R-ing and W-ing are adjoint in virtue of the curry-uncurry isomorphisms:

curry :: ((a, s) -> b) -> a -> s -> b -- (W a -> b) -> a -> R b

curry f a s = f (a, s)

uncurry :: (a -> s -> b) -> (a, s) -> b -- (a -> R b) -> W a -> b

uncurry f (a, s) = f a s

-- curry . uncurry == id

-- uncurry . curry == id

37

Adjunctions in Edwart Kmett’s Data.Functor.Adjunction

class (Functor f, Functor g) => Adjunction f g where

{-# MINIMAL (unit, counit) | (leftAdjunct, rightAdjunct) #-}

unit :: a -> g (f a)

counit :: f (g a) -> a

leftAdjunct :: (f a -> b) -> a -> g b

rightAdjunct :: (a -> g b) -> f a -> b

unit = leftAdjunct id -- aka eta

counit = rightAdjunct id -- aka epsilon

leftAdjunct f = fmap f . unit

rightAdjunct f = counit . fmap f

38

From adjoints to monads

class (Functor f, Functor g) => Adjunction f g where

{-# MINIMAL (unit, counit) | (leftAdjunct, rightAdjunct) #-}

unit :: a -> g (f a) -- eta

counit :: f (g a) -> a -- epsilon

leftAdjunct :: (f a -> b) -> a -> g b

rightAdjunct :: (a -> g b) -> f a -> b

F ⊣ G implies that GF is a monad! We may deduce GF ’s •, η, and µ from F ⊣ G.

• :: (a→ b)→GF a→GF b follows from functoriality of G and F

η :: a→GF a is the unit of the adjunction

µ :: GFGF a→GF a is given by G(ε)

39

From adjoints to monads

class (Functor f, Functor g) => Adjunction f g where

{-# MINIMAL (unit, counit) | (leftAdjunct, rightAdjunct) #-}

unit :: a -> g (f a) -- eta

counit :: f (g a) -> a -- epsilon

leftAdjunct :: (f a -> b) -> a -> g b

rightAdjunct :: (a -> g b) -> f a -> b

F ⊣ G implies that GF is a monad! We may deduce GF ’s •, η, and µ from F ⊣ G.

• :: (a→ b)→GF a→GF b follows from functoriality of G and F

η :: a→GF a is the unit of the adjunction

µ :: GFGF a→GF a is given by G(ε)

39

Concretely, for RW

instance Adjunction W R where

leftAdjunct = curry

rightAdjunct = uncurry

unit x == (leftAdjunct id) x

== (curry id) x

== curry (\(a, s) -> (a, s)) x

== (\a s -> (a, s)) x

== \s -> (x, s)

counit (f, x) == (rightAdjunct id) (f, x)

== (uncurry id) (f, x)

== (uncurry (\a s -> a s)) (f, x)

== (\(a, s) -> a s) (f, x)

== f x

join m == fmap_R counit m

== counit . mm

== \s -> counit (mm s)

== \s -> m s' where (m, s') = mm s

40

Concretely, for RW

instance Adjunction W R where

leftAdjunct = curry

rightAdjunct = uncurry

unit x == (leftAdjunct id) x

== (curry id) x

== curry (\(a, s) -> (a, s)) x

== (\a s -> (a, s)) x

== \s -> (x, s)

counit (f, x) == (rightAdjunct id) (f, x)

== (uncurry id) (f, x)

== (uncurry (\a s -> a s)) (f, x)

== (\(a, s) -> a s) (f, x)

== f x

join m == fmap_R counit m

== counit . mm

== \s -> counit (mm s)

== \s -> m s' where (m, s') = mm s

40

Concretely, for RW

instance Adjunction W R where

leftAdjunct = curry

rightAdjunct = uncurry

unit x == (leftAdjunct id) x

== (curry id) x

== curry (\(a, s) -> (a, s)) x

== (\a s -> (a, s)) x

== \s -> (x, s)

counit (f, x) == (rightAdjunct id) (f, x)

== (uncurry id) (f, x)

== (uncurry (\a s -> a s)) (f, x)

== (\(a, s) -> a s) (f, x)

== f x

join m == fmap_R counit m

== counit . mm

== \s -> counit (mm s)

== \s -> m s' where (m, s') = mm s

40

Concretely, for RW

instance Adjunction W R where

leftAdjunct = curry

rightAdjunct = uncurry

unit x == (leftAdjunct id) x

== (curry id) x

== curry (\(a, s) -> (a, s)) x

== (\a s -> (a, s)) x

== \s -> (x, s)

counit (f, x) == (rightAdjunct id) (f, x)

== (uncurry id) (f, x)

== (uncurry (\a s -> a s)) (f, x)

== (\(a, s) -> a s) (f, x)

== f x

join m == fmap_R counit m

== counit . mm

== \s -> counit (mm s)

== \s -> m s' where (m, s') = mm s

40

Monad transformers

What’s more, GF can compositionally transform any monad M into a ‘super-monad’

GMF with the functionality of G, F , and M !2

• :: (a→ b)→GMF a→GMF b follows from functoriality of G, M , and F

η :: a→GMF a is given by G(ηM) ◦ ηGF
µ :: GMFGMF a→GMF a is given by G(µM) ◦GM(ε)

This is in some sense the “origin” of the State transformer we discussed earlier.

2 This RL’s the ST monad, and R[]L’s the ST transformer (Liang, Hudak & Jones 1995, Cohn-Gordon

2016). LR is the Store comonad, useful for structured meanings (Krifka 1991, 2006).
41

Monad transformers

What’s more, GF can compositionally transform any monad M into a ‘super-monad’

GMF with the functionality of G, F , and M !2

• :: (a→ b)→GMF a→GMF b follows from functoriality of G, M , and F

η :: a→GMF a is given by G(ηM) ◦ ηGF
µ :: GMFGMF a→GMF a is given by G(µM) ◦GM(ε)

This is in some sense the “origin” of the State transformer we discussed earlier.

2 This RL’s the ST monad, and R[]L’s the ST transformer (Liang, Hudak & Jones 1995, Cohn-Gordon

2016). LR is the Store comonad, useful for structured meanings (Krifka 1991, 2006).
41

Transformers via adjunctions: Control.Monad.Trans.Adjoint

newtype AdjointT f g m a = AdjointT { runAdjointT :: g (m (f a)) }

-- ...

instance (Adjunction f g, Monad m) => Monad (AdjointT f g m) where

pure = AdjointT . leftAdjunct return

AdjointT m >>= f =

AdjointT $ fmap (>>= rightAdjunct (runAdjointT . f)) m

42

Extending type-driven semantic parsing once more

if a · b ⇒ (f , c), then


F a · b ⇒ (↑Rf lr := (λl ′.f l′ r) • l , F c)
a · F b ⇒ (↑Lf lr := (λr ′.f lr ′) • r , F c)

F a · F b ⇒ (A f lr := f • l⊛ r , F c)

To these binary rules, we can add monadic join-ing, and adjoint counit:

if a · b ⇒ (f ,MMc), then a · b ⇒ (J f lr := µ(f lr),M c)
if a · b ⇒ (f , LRc) , then a · b ⇒ (Ef lr := ε(f lr),M c)

43

Example: Maryi’s mom saw heri

We’ll make some very simple (in fact, variable-free) assumptions about meanings:

mary+ := (m,m)︸ ︷︷ ︸
We

she := λx.x︸ ︷︷ ︸
Re

t

E, ↑R, ↑L, <

W e

↑R, <

W e

Lex

"mary+"

e -> e

Lex

"mom"

R (e -> t)

↑L, >

e -> e -> t

Lex

"saw"

R e

Lex

"her"

Equivalent to saw mary (mom mary). Binding without c-command or scope!

44

Example: Maryi’s mom saw heri

We’ll make some very simple (in fact, variable-free) assumptions about meanings:

mary+ := (m,m)︸ ︷︷ ︸
We

she := λx.x︸ ︷︷ ︸
Re

t

E, ↑R, ↑L, <

W e

↑R, <

W e

Lex

"mary+"

e -> e

Lex

"mom"

R (e -> t)

↑L, >

e -> e -> t

Lex

"saw"

R e

Lex

"her"

Equivalent to saw mary (mom mary). Binding without c-command or scope!

44

Linearity

The picture of binding that emerges from R, W, and their ε, is interestingly linear

(more precisely, affine): every binder can bind (at most) once.

In NL, of course, expressions can have multiple dependents. It would be natural to

capture this by allowing pronouns to reactivate their referent in memory:

she+ := λx.(x,x)︸ ︷︷ ︸
R(We)

W t

E, ↑R, ↑L, ↑L, <

W e

↑R, <

W e

Lex

"mary+"

e -> e

Lex

"mom"

R (W (e -> t))

↑L, ↑L, >

e -> e -> t

Lex

"saw"

R (W e)

Lex

"her+"

Equivalent to (saw mary (mom mary), mary). The referent lives on!

45

Linearity

The picture of binding that emerges from R, W, and their ε, is interestingly linear

(more precisely, affine): every binder can bind (at most) once.

In NL, of course, expressions can have multiple dependents. It would be natural to

capture this by allowing pronouns to reactivate their referent in memory:

she+ := λx.(x,x)︸ ︷︷ ︸
R(We)

W t

E, ↑R, ↑L, ↑L, <

W e

↑R, <

W e

Lex

"mary+"

e -> e

Lex

"mom"

R (W (e -> t))

↑L, ↑L, >

e -> e -> t

Lex

"saw"

R (W e)

Lex

"her+"

Equivalent to (saw mary (mom mary), mary). The referent lives on!

45

Someonei left; and she+i whistled (left)

*TDParse> semTrees $ parse [someone2, left, and, she2, whistled]

S (W t)

↑R, E, ↑R, ↑L, ↑L, <

S (W t)

↑R, ↑R, <

S (W e)

Lex

"someone+"

e -> t

Lex

"left"

R (W (t -> t))

↑L, ↑L, >

t -> t -> t

Lex

"and"

R (W t)

↑R, ↑R, <

R (W e)

Lex

"she+"

e -> t

Lex

"whistled"

Equivalent to [(left x && whistled x, x) | x <- someone]!

46

Comonads: A Higher-Order Detour

47

Comonads

Remember this very interesting progression from more to less powerful ways that

an Effectful computation Fa can interact with a continuation k

(•) :: (a→ b)→ Fa→ Fb

(⊛) :: F(a→ b)→ Fa→ Fb

flip(⋆) :: (a→ Fb)→ Fa→ Fb

(†) :: (Fa→ b)→ Fa→ Fb

There’s clearly one other option here. . .

Functors with a well-behaved (†) of this type are called Comonads

48

Comonads

Remember this very interesting progression from more to less powerful ways that

an Effectful computation Fa can interact with a continuation k

(•) :: (a→ b)→ Fa→ Fb

(⊛) :: F(a→ b)→ Fa→ Fb

flip(⋆) :: (a→ Fb)→ Fa→ Fb

(†) :: (Fa→ b)→ Fa→ Fb

There’s clearly one other option here. . .

Functors with a well-behaved (†) of this type are called Comonads

48

Comonad examples

class Comonad f where

extract :: f a -> a

extend :: (f a -> b) -> f a -> f b

Fα ::= . . .α . . .

ε :: Fα→ α

† :: (Fα→ β)→ Fα→ Fβ

Monads often used to model a sequence or pipeline of Effects

Comonads often used to model interactions with Context

Wα ::= ⟨α,t⟩

ε = fst

k † ⟨a,p⟩ = ⟨k⟨a,p⟩, p⟩

Rα ::= r→ α

ε = λw.w []

k †w = λr .k(λr ′.w (r ′++r))

49

Comonads from adjunctions

Remember that F ⊣ G implies that GF is a monad; it likewise implies that FG is a

comonad

class (Functor f, Functor g) => Adjunction f g where

{-# MINIMAL (unit, counit) | (leftAdjunct, rightAdjunct) #-}

unit :: a -> g (f a) -- eta

counit :: f (g a) -> a -- epsilon

leftAdjunct :: (f a -> b) -> a -> g b

rightAdjunct :: (a -> g b) -> f a -> b

We may deduce FG’s •, ε, and † from F ⊣ G.

• :: (a→ b)→ FGa→ FGb still follows from functoriality of F and G

ε :: FGa→ a is the counit of the adjunction

† :: (FGa→ b)→ FGa→ FGb is determined from FG(η)

50

Comonads from adjunctions

Remember that F ⊣ G implies that GF is a monad; it likewise implies that FG is a

comonad

class (Functor f, Functor g) => Adjunction f g where

{-# MINIMAL (unit, counit) | (leftAdjunct, rightAdjunct) #-}

unit :: a -> g (f a) -- eta

counit :: f (g a) -> a -- epsilon

leftAdjunct :: (f a -> b) -> a -> g b

rightAdjunct :: (a -> g b) -> f a -> b

We may deduce FG’s •, ε, and † from F ⊣ G.

• :: (a→ b)→ FGa→ FGb still follows from functoriality of F and G

ε :: FGa→ a is the counit of the adjunction

† :: (FGa→ b)→ FGa→ FGb is determined from FG(η)

50

Concretely, for RW

instance Adjunction W R where

leftAdjunct = curry

rightAdjunct = uncurry

This means that dual to the RW (State) Monad that you get from the W ⊣ R

adjunction, there is also guaranteed to be WR (Costate) Comonad

WRα ::= ⟨r→ α,r⟩

ε⟨c, g⟩ = ⟨cg,g⟩

k † ⟨c, g⟩ = ⟨λg′.k⟨c, g′⟩, g⟩

51

Store comonads for focus

The WR structure turns out to be another way to think about focus (Krifka 1992)

Expression Type Denotation

SASSY Fe ::= e× {e} ⟨s, {x | x ∈ De}⟩
SASSY sat Ft ::= t× {t} ⟨sats, {satx | x ∈ De}⟩
. . .

SASSY Fe ::= (e→ e)× e ⟨λx.x,s⟩
SASSY sat Ft ::= (e→ t)× e ⟨λx.satx,s⟩

52

Extended association with focus

What would it be like to use the † for WR considered as a focus effect?

Expression Type Denotation

only Ft→ t λ⟨c,x⟩.{z | cz} = {x}
. . .

† only Ft→ Ft λ⟨c,x⟩.⟨λy.�only�⟨c,y⟩, x⟩
= λ⟨c,x⟩.⟨λy.{z | cz} = {y}, x⟩

53

Parting words

A lightweight compositional interface that extends familiar compositional semantic

theories with effects is within reach.

We can extend type-driven interpretation, simply, with functors, applicatives,

monads, adjoints, and possibly other effectful constructs, as the need arises.

We hope to have given you a sense of the power and elegance of this approach,

some of the empirical payoffs, and the ways in which it simplifies the task of the

semanticist, and perhaps the language learner.

54

Aloni, Maria. 2007. Free choice, modals, and imperatives. Natural Language Semantics 15(1). 65–94.

https://doi.org/10.1007/s11050-007-9010-2.

Alonso-Ovalle, Luis. 2006. Disjunction in alternative semantics. University of Massachusetts, Amherst Ph.D. thesis.

https://semanticsarchive.net/Archive/TVkY2ZlM/.

Barker, Chris. 2002. Continuations and the nature of quantification. Natural Language Semantics 10(3). 211–242.

https://doi.org/10.1023/A:1022183511876.

Barker, Chris & Chung-chieh Shan. 2008. Donkey anaphora is in-scope binding. Semantics and Pragmatics 1(1).

1–46. https://doi.org/10.3765/sp.1.1.

Barker, Chris & Chung-chieh Shan. 2014. Continuations and natural language. Oxford: Oxford University Press.

https://doi.org/10.1093/acprof:oso/9780199575015.001.0001.

Beaver, David & Emiel Krahmer. 2001. A partial account of presupposition projection. Journal of logic, language

and information 10(2). 147–182.

Boër, Steven E & William G Lycan. 1976. The myth of semantic presupposition.

Charlow, Simon. 2014. On the semantics of exceptional scope. New York University Ph.D. thesis.

https://semanticsarchive.net/Archive/2JmMWRjY/.

Charlow, Simon. 2019. A modular theory of pronouns and binding. Unpublished ms., Rutgers University.

https://ling.auf.net/lingbuzz/003720.

55

https://doi.org/10.1007/s11050-007-9010-2
https://semanticsarchive.net/Archive/TVkY2ZlM/
https://doi.org/10.1023/A:1022183511876
https://doi.org/10.3765/sp.1.1
https://doi.org/10.1093/acprof:oso/9780199575015.001.0001
https://semanticsarchive.net/Archive/2JmMWRjY/
https://ling.auf.net/lingbuzz/003720

Charlow, Simon. 2020. The scope of alternatives: indefiniteness and islands. Linguistics and Philosophy 43(4).

427–472. https://doi.org/10.1007/s10988-019-09278-3.

Cohn-Gordon, Reuben. 2016. Monad transformers for natural language: Combining monads to model effect

interaction. Unpublished ms.

Gardent, Claire. 1991. Dynamic semantics and VP-ellipsis. In Jan van Eijck (ed.), Logics in AI: European workshop

JELIA ’90 Amsterdam, The Netherlands, September 10–14, 1990 proceedings, 251–266. Berlin, Heidelberg:

Springer Berlin Heidelberg. https://doi.org/10.1007/BFb0018446.

Hardt, Daniel. 1993. VP ellipsis: Form, meaning, and processing. University of Pennsylvania Ph.D. thesis.

https://repository.upenn.edu/dissertations/AAI9331786.

Hardt, Daniel. 1999. Dynamic interpretation of verb phrase ellipsis. Linguistics and Philosophy 22(2). 187–221.

https://doi.org/10.1023/A:1005427813846.

Kaplan, David. 1979. On the logic of demonstratives. Journal of philosophical logic 8(1). 81–98.

Kratzer, Angelika & Junko Shimoyama. 2002. Indeterminate pronouns: The view from Japanese. In Yukio Otsu (ed.),

Proceedings of the Third Tokyo Conference on Psycholinguistics, 1–25. Tokyo: Hituzi Syobo.

Krifka, Manfred. 1991. A compositional semantics for multiple focus constructions. In Steve Moore & Adam Wyner

(eds.), Proceedings of Semantics and Linguistic Theory 1, 127–158. Ithaca, NY: Cornell University.

https://doi.org/10.3765/salt.v1i0.2492.

Krifka, Manfred. 1992. A framework for focus-sensitive quantification. In Semantics and linguistic theory, vol. 2,

215–236.

56

https://doi.org/10.1007/s10988-019-09278-3
https://doi.org/10.1007/BFb0018446
https://repository.upenn.edu/dissertations/AAI9331786
https://doi.org/10.1023/A:1005427813846
https://doi.org/10.3765/salt.v1i0.2492

Krifka, Manfred. 2006. Association with focus phrases. In Valéria Molnár & Susanne Winkler (eds.), The

Architecture of Focus, 105–136. Mouton de Gruyter.

Liang, Sheng, Paul Hudak & Mark Jones. 1995. Monad transformers and modular interpreters. In 22nd ACM

Symposium on Principles of Programming Languages (POPL ’95), 333–343. ACM Press.

Partee, Barbara H. & Mats Rooth. 1983. Generalized conjunction and type ambiguity. In Rainer Bäuerle,

Christoph Schwarze & Arnim von Stechow (eds.), Meaning, Use and Interpretation of Language, 361–383.

Berlin: Walter de Gruyter. https://doi.org/10.1515/9783110852820.361.

Shan, Chung-chieh. 2001. A variable-free dynamic semantics. In Robert van Rooy & Martin Stokhof (eds.),

Proceedings of the Thirteenth Amsterdam Colloquium. University of Amsterdam.

Shan, Chung-chieh & Chris Barker. 2006. Explaining crossover and superiority as left-to-right evaluation. Linguistics

and Philosophy 29(1). 91–134. https://doi.org/10.1007/s10988-005-6580-7.

Wadler, Philip. 1994. Monads and composable continuations. LISP and Symbolic Computation 7(1). 39–56.

https://doi.org/10.1007/BF01019944.

57

https://doi.org/10.1515/9783110852820.361
https://doi.org/10.1007/s10988-005-6580-7
https://doi.org/10.1007/BF01019944

	Recap
	The higher-order
	Another way down: adjunctions
	Comonads: A Higher-Order Detour
	References

