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1 Introducing effects

1.1 Type-driven compositional semantics
Contemporary natural language semantic theories are generally drafted

around three theoretically load-bearing components:

• a syntax, detailing the arrangement of grammatical expressions
• a lexicon, spelling out the meanings of individual expressions
• a theory of composition, describing how the meanings of complex expressions

are built from their parts

Perhaps the simplest commonly-practiced architecture holds that expressions
are constituted into binary-branching trees with lexical items at the leaves.
Composition is governed by a simple theory of types, in the sense of Church
(1940). A simple type is either primitive, corresponding to some basic sort of
object (an entity e, an event v, a truth value t, etc.), or is constructed from two
other types with an arrow τ1 � τ2, corresponding to a function with domain τ1
and codomain τ2.

These types regulate an inventory of combinators, or modes of combination,
which determine the range of ways that two meaningful expressions may
combine. Given the simple type theory, by far the most common choices are
forward and backward function application. For small, extensional fragments
of language, this is often all that is required. But one may find appeal to other
modes, including for example, various flavors of function composition (Ades
& Steedman, 1982; Dowty, 1988), set restriction (Chung & Ladusaw, 2003;
Kratzer, 1996), and set intersection (Kamp, 1975; Siegel, 1976).

With a grammar and a bank of combinatory modes in hand, composition is
then said to be type-driven (Klein & Sag, 1985). The types of two daughter
nodes are matched against the possible modes of combination. If the left type
instantiates a combinator’s first argument, and the right type its second, then
the denotations of the daughters are composed as the combinator dictates. This
basic setup is illustrated in Figure 1.

Given that types are used to dispatch modes of semantic combination,
there must be an airtight correspondence between an expression’s type and its
denotation for this compositional regimen to make any sense. An expression of
type e� t must in fact denote a function whose domain is the set of ordinary
entities and whose codomain is the set of truth values. And an expression which
denotes such a property of entities must in fact have type e� t. In this sense,
the semantics is said to be strongly typed, or type-safe.
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Types:

τF e | t | . . . Primitive types
| τ� τ Function types

Modes of combination:

(>) :: (α� β) � α� β Forward Application
𝑓 > 𝑥 B 𝑓 𝑥

(<) :: α� (α� β) � β Backward Application
𝑥 < 𝑓 B 𝑓 𝑥

(◦) :: (β� ς) � (α� β) � α� ς Backward Composition
𝑓 ◦ 𝑔 B λ𝑥. 𝑓 (𝑔 𝑥)

(u) :: (e� t) � (e� t) � e� t Predicate Modification
𝑓 u 𝑔 B λ𝑥. 𝑓 𝑥 ∧ 𝑔 𝑥

(�) :: (α� β� t) � (α� t) � α� β� t Relation Restriction
𝑟 � 𝑝 B λ𝑥λ𝑦. 𝑟 𝑥 𝑦 ∧ 𝑝 𝑥

Figure 1 A simple type-driven grammar



Effect-driven interpretation 3

Throughout this Element, we will display type-driven derivations as trees
recording the types of the constituents derived. Below each branching node in
a derivation tree, we will identify the mode of combination used to combine
that node’s daughters. An example, using some of the combinators in Figure 1,
is given in (1.1). Sometimes, as in (1.1), we will also provide reduced lambda
terms below the types of nodes, corresponding to their denotations, with
constants standing for the denotations of lexical items printed in bold. However,
denotations are always recoverable by recursively applying the combinators
below nodes to the denotations of their daughters, so they are generally omitted
except where we think they may be clarifying.

t

meow (the (tallest (λ𝑥. happy𝑥 ∧ cat𝑥)))

e

the (tallest (happy u cat))

(e� t) � e
λ𝑝. the (tallest 𝑝)

(e� t) � e
the

the

(e� t) � (e� t)
tallest

tallest

e� t
λ𝑥. happy𝑥 ∧ cat𝑥

e� t
happy

happy

e� t
cat

cat

e� t
meow

meowed

<

>

◦ u

(1.1)

As it happens, the more or less canonical combinators in Figure 1 have the
property that at most one of them will apply to any given pair of daughters.
This guarantees that interpretation is deterministic: for any specific syntactic
structure, there will be at most one interpretation (though there may of course
be more than one well-typed structure for a given string). In principle, however,
with a larger or different inventory of modes of combination, there could be a
node at which more than one combinatory rule is applicable. In this case, the
types would underdetermine the meaning of the complex expression, predicting
only a set of possible interpretations. Indeed, we will at many places in this
Element make use of this compositional indeterminacy in the prediction of
various systematic ambiguities.
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1.2 More than just a name
One consequence of the picture in Figure 1 is that generally speaking, when

two expressions have the same syntactic distribution, they must also have the
same type. As every student of semantics knows, this leads immediately to
trouble. Most famously, quantificational noun phrases by and large occur in the
same syntactic positions as proper names. For instance, like names, they are
just as felicitous in subject positions as they are in object positions.

{Jupiter, every planet} has set(1.2a)

The moon outshines {Jupiter, every planet}(1.2b)

But the only type that can be combined in both of the trees of (1.3) is e.

t

Jupiter /
every planet

e� t

has set

t

e

The moon e� e� t
outshines Jupiter /

every planet

(1.3)

For proper names this is sensible, of course. But for quantificational phrases it
is absurd. Well-rehearsed entailment patterns show that there can be no singular
entity that is the referent of ‘every planet’, or ‘no planet’, or ‘at least one planet’,
etc. And given the required type-safety of the semantics, they therefore cannot
be expressions of type e.

Solutions to this problem break in every conceivable direction: reject that
these are the trees that are interpreted, reject that these are the correct types of
the lexical items, reject that these are the only modes of combination, reject
the type system, and so on. But one perhaps underappreciated aspect of the
compositional conundrum laid bare in (1.3) is that it is not at all specific to
matters of quantification. The basic nature of the problem is that an expression,
say ‘every planet’, appears to play exactly the same argument-structural role as
a name, yet clearly contributes something other than a simple referent to the
meaning of the sentence. One might say the same is true of ‘wh’-expressions,
or indefinites, or disjunctions, as in (1.4). These are not (obviously) quantifiers,
but they are (obviously) not names either. The arguments they provide to their
predicates are indeterminate, just a stock of potential witnesses conjured up in
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parallel.

Which planet is next to the moon(1.4a)

A planet is next to the moon(1.4b)

Jupiter or Mars is next to the moon(1.4c)

Definites too do not have the same semantic profile as names, despite
saturating the same argument positions. What they refer to, or whether they
refer at all, depends on what things are contextually salient. But an expression
that does not have a stable individual referent cannot have type e. Pronouns,
demonstratives, and indexicals even more clearly depend on context in a way
that the type e does not represent.

The planet in the West is next to the moon(1.5a)

It is next to the moon(1.5b)

This planet that I’m looking at is next to the moon(1.5c)

In fact, with a bit of prosodic focus, any noun phrase can be made to contribute
more to the meaning of the sentence than just its referent. The sentences in (1.6)
do not have the same truth conditions; the first is true when nothing relevant is
visible except for Jupiter’s moon, and the second true when no other relevant
moon is visible except for Jupiter’s. The only difference between them is which
phrase is focused, so the meanings of the focused phrases must somehow encode
the necessary information.

Only [Jupiter’s moon]F is visible(1.6a)

Only [Jupiter]F’s moon is visible(1.6b)

Likewise, even more transparently, a noun phrase may always be supple-
mented by various sorts of parenthetical and appositive constructions. For
instance, the supplemented subject of (1.7a) and object of (1.7b) clearly saturate
the same argument positions as the plain name that anchors them. Yet the
supplemented phrases obviously add propositional information to the sentence,
information that cannot be found in any individual entity.

Mars, which is now next to the moon, is setting(1.7a)

Jupiter has passed Mars, which is now next to the moon(1.7b)

Again, all of the phrases in (1.4)–(1.7) behave for compositional purposes
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as if they denoted ordinary entities. They are, by and large, grammatical and
sensible wherever something of type e would be grammatical and sensible.
But they cannot, or at least can’t merely, denote entities. Their semantics is
necessarily more complicated than this.

And these kinds of discrepancies are by no means limited to noun phrases.
There are adjunct ‘wh’-expressions that modify the same sorts of properties
as ordinary adjuncts, and disjunctions of every category. There are verbs that
differ only in their presuppositions. There are pro-forms and gaps and traces
over arbitrarily complex types, parentheticals that can attach to almost anything,
and of course quantifiers galore. All over the place we see expressions with
interesting and complicated semantic properties that are nevertheless squeezed
into positions where semantically boring expressions are expected, and this does
not seem to disrupt composition in the slightest.

In this Element we adopt the view that these sorts of enriched expressions
ought to be analogized to impure components of programming languages. This
view has many precedents. Chief among them are analyses in the dynamic bent
of Heim (1982), especially as described by Groenendijk and Stokhof (1991),
Muskens (1990, 1996), Eijck (2001), and colleagues, as well as analyses making
heavy use of continuation-passing, including de Groote (2001), Barker (2002),
Barker and Shan (2014), and Kiselyov and Shan (2014). The perspective we
present here seeks to unify some of this work and much independent work on
composition in various empirical domains.

In so doing, we largely follow the program introduced to linguistics by
Shan (2001a, 2005), and built upon by Charlow (2014), Asudeh and Giorgolo
(2020), and others. This program borrows directly from a tradition in computer
science incorporating concepts from Category Theory that isolate repeating
algebraic patterns that arise when working with various mathematical structures.
These patterns have been fruitfully applied in explicating the semantics of
common programming language constructs, and also in streamlining the design
of type-safe programming languages themselves.

As linguists, we benefit from this work on both ends. On the one hand,
natural languages are much like weakly-typed programs. As we’ve already
sketched, all sorts of weird semantic stuff can happen that the grammatical
system, the compiler if you will, is blind to. In that sense, the mathematical
concepts undergirding compositional semantic descriptions of such semantically
devious languages can be imported, often wholesale, to linguistics. On the
other hand, the strongly-typed programming languages engineered specifically
to avoid any semantic shenanigans can be used as an executable formalism
for implementing compositional analyses of languages of the former, screwy,
variety, including the ones we use every day.
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We will not presuppose any particular exposure to programming or pro-
gramming language theory. The entire discussion is intended to be accessible
to anyone familiar with the usual aims and methods of compositional natural
language semantics. But we will also include snippets of code implementing
key ideas, if for no other reason than because it is so easy to do so, and it makes
for a much more engaging and robust means of theorizing.

1.3 Effects in programming languages
The constructs of so-called imperative programming languages are often

divided into two categories. On the one hand there are pure expressions that
carry out the basic business of determining a concrete result, or value. These
include literal expressions like characters, strings, numbers, and booleans,
whose values are fixed and stable, what we might call the names of the language.
Other pure expressions include the (total) functions that convert one value to
another. Usually a language provides a library of such functions, including
straightforward boolean and arithmetic operations, like negation and addition
and such. These we might think of as the ordinary nouns and verbs and adjectives
of the language. Semantically, they are no more interesting than their graphs,
the pairings between their inputs and outputs.

On the other hand there are statements. These are the bits of program text
that determine the evaluation order and control flow of a computation, that
is, what happens when the program is executed. Where pure expressions are
intended to refer or otherwise reduce to some or other plain value, statements
are intended do things, like change addresses in memory, (re-)assign and/or
allocate variables, throw errors, spawn threads, start loops, and print things to
your screen. These sorts of non-referential processes are loosely referred to as
(side) effects of computation.

As in natural language, program snippets containing commands like these
may appear in the same places that pure program snippets would. For instance,
the function plus on the left of Figure 2 is pure. It simply returns the sum of
its two inputs. The function showplus on the right is impure. It also returns the
sum of its two inputs, but additionally prints some words to the screen. In any
given calling context, like 5 * ___ , the two functions will yield the same value.
But when the one on the right is executed, the additional words are printed, as
displayed in Figure 2.

How then do programming language theorists think about the meanings of
programs like showplus ? The answers to that question are certainly no less
varied and creative than the answers that linguists have given to the issues
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function plus(x,y) = {

return x + y
}

> 5 * plus(3, 7)

50

function showplus(x,y) = {
console.log("doing (+)");
return x + y

}

> 5 * showplus(3, 7)
"doing (+)"
50

Figure 2 Pure and impure javascript programs

of composing the phrases introduced above. But, excitingly, they are often
different! In this Element, we do not pretend to offer a survey of the semantic
methods deployed by computer scientists for reasoning about effects. Instead
we concentrate on a few of the algebraic and combinatorial techniques that have
proved useful in linguistic theorizing.

The first order of business is rectifying the situation with the types. Type-
safety requires that any semantically-relevant behavior of a program be reflected
in its type. The same is true in language. To model the variety of behaviors on
display in (1.4)–(1.7), it will be helpful to first expand the type system.

1.4 Algebraic Data Types
Some of the exhibited linguistic effects seem to call for denotations with

multiple dimensions of meaning. The natural mathematical setting for modeling
multi-dimensionality is a tuple, with different semantic dimensions in different
coordinates. We thus introduce product types α × β to model meanings that
carry both type α and type β content. Denotationally, an expression of type
α × β takes its meaning from the Cartesian product of α and β.

Mars, a planet :: e × t
JMars, a planetK = 〈m, planetm〉

(1.8)

Other effects seem to call for denotations with multiple variants of meaning.
For instance, a definite description will either refer to an object (type e), or it
will fail to refer, returning a computational dead end. We might model a failure
of reference with a type ⊥ whose only value is #. The description therefore
denotes a computation that will return a value of one of two distinct types, either
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type e or type ⊥. The type of such a computation is naturally modeled by a sum
type α + β. Denotationally, an expression of type α + β takes its meaning from
the disjoint union of α and β.

the planet :: e + ⊥
Jthe planetK = 𝑥 if planet = {𝑥} else #

(1.9)

Types built from product, sum, and arrow constructors are called Algebraic
Data Types. Finally, we will want to be able to define the types of values that
are drawn from powersets of specific domains. For this we will slightly abuse
the notation {α} to represent the type whose members are sets of type-α things.
For instance, the canonical Hamblin denotation for a ‘wh’-argument is a set of
entities (Hamblin, 1973), and its type therefore is {e}.

which planet :: {e}
Jwhich planetK = {𝑥 | planet𝑥}

(1.10)

With these algebraic data types as scaffolding for structured values, the entries
in Table 1 spell out some more or less standard semantic characterizations of the
constructions in (1.4)–(1.7). Of course there are many competing analyses for
each of these expressions, but we won’t pause to motivate the choices in Table 1.
The entries are intended primarily as illustrative test cases for the approach to
compositionality we will describe.

The first four rows are the examples we’ve seen, deploying the complex
types that represent the different kinds of structured values we will make use
of. Pronouns and the like are naturally construed as functions from some
sort of context r to a referent. Different theories of anaphora resolution may
choose to model linguistic contexts in different ways (and so choose different
domains for the type r and different selection functions (·)0), but as far as we
are aware, every semantics for pronominal/indexical elements has this basic
functional shape. Definite descriptions denote “partial entities”; they either
succeed in referring to an entity or they result in failure. Supplemented names
are bidimensional, including both an ordinary referent and a fact about that
referent. And ‘wh’-expressions refer indeterminately, denoting the set of all
their possible answers.

The next four rows in the table are slightly more complex, involving nested
constructions of types. Quantificational phrases denote Generalized Quanti-
fiers, properties of properties. Focused phrases are both bidimensional and
indeterminate; a certain entity is named, while the alternatives to that entity
are evoked. And then we list a topic-marked name and an indefinite in the
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Expression Type Denotation

it r� e λ𝑔. 𝑔0

the planet e + ⊥ 𝑥 if planet = {𝑥} else #
Jupiter, a planet e × t 〈j, planet j〉
which planet {e} {𝑥 | planet𝑥}
no planet (e� t) � t λ𝑐. ¬∃𝑥. planet𝑥 ∧ 𝑐 𝑥

JupiterF e × {e} 〈j, {𝑥 | 𝑥 ∈ 𝐷e}〉
as for Jupiter s� (e × s) λ𝑠. 〈j, j++ 𝑠〉
a planet s� {e × s} λ𝑠. {〈𝑥, 𝑥++ 𝑠〉 | planet𝑥}
Table 1 Example noun phrases, their types and denotations

style of dynamic semantics. Topics, almost by definition, not only refer, but
also put their referent front and center on some sort of evolving discourse
stage. This is naturally modeled by the deterministic update in the table, which
both holds out j for composition (as in the appositive and focus rows) and also
rotates j to the front of a context 𝑠. Typical dynamic analyses of indefinites are
similar, in that they change the conversational state so that their witnesses are
available for anaphora. But like ‘wh’-expressions, indefinites do not necessarily
single out unique referents, and so in general correspond to updates that are
nondeterministic. Again, theories may differ in how they model discourse
contexts (determining different domains for s and different update functions ++ ),
but all dynamic semantics in the wake of Heim (1982) have the basic relational
update procedure from inputs 𝑠 to modified outputs 𝑠++𝑥.

The perspective we would like to encourage here views these expressions as
denoting particular kinds of computations, specifically computations that yield
entities. A pronoun reads a referent off of an environment. An appositive writes
a fact to the common ground. A ‘wh’-expression introduces a slate of choices
that fork the sentence into several parallel threads. A definite description is
a program that might crash if executed in the wrong situation. An indefinite
modifies what referents are in memory, and possibly what addresses they’re
stored in. And so on.

Remember, all of these expressions appear in positions where ordinary
entities are expected. And naturally their denotations all, one way or another,
contain, return, manipulate, abstract over, or quantify over entities. Following
the programming literature, we will sometimes talk about the entities in these
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types as being situated in a particular computational context, and use the term
effect to refer to whatever a computation does with them.

To make this formal, let us introduce ad-hoc type constructors for each
of the effects in Table 1. Here we use the term (unary) type constructor to
mean a function from types to types. We find the constructor for each effect by
abstracting over e. For instance, the G constructor encodes the effect of reading
from an environment of type r. The W constructor encodes the effect of logging
a message of type t. The M constructor the effect of possibly failing.

(1.11) G α F r� α C α F ( α � t) � t
W α F α × t F α F α × { α }

M α F α + ⊥ S α F { α }

T α F s� ( α × s) D α F s� { α × s}

Then we can express our dictionary of noun phrases as in Table 2. This
makes clear that all of these expressions are entity-directed computations. The
particular nature of each computation is encoded in the structure of the effect
defined by its type constructor in (1.11).

Expression Type Denotation

it Ge λ𝑔. 𝑔0

the planet Me 𝑥 if planet = {𝑥} else #
Jupiter, a planet We 〈j, planet j〉
which planet Se {𝑥 | planet𝑥}
no planet Ce λ𝑐. ¬∃𝑥. planet𝑥 ∧ 𝑐 𝑥

JupiterF Fe 〈j, {𝑥 | 𝑥 ∈ 𝐷e}〉
as for Jupiter Te λ𝑠. 〈j, j++ 𝑠〉
a planet De λ𝑠. {〈𝑥, 𝑥++ 𝑠〉 | planet𝑥}

Table 2 Example noun phrases, with types encoded by effect constructors

So far all we have done is relabel the types of different kinds of values. None
of this provides any immediate relief to the problem at hand, which is to fit these
expressions into contexts that only know how to process an ordinary entity. On
the contrary, hiding all the mathematical structure of the types would seem to
preclude rather than facilitate type-driven composition.

But it turns out that all of these constructors — G, . . . , D — share a few
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very important algebraic properties. And these properties allow us to ignore
whatever is specific to the kind of computation represented by the type, and
get on with the work of passing the underlying entity into the predicate that it
saturates. This not only paves the way for composition, it also reveals a certain
uniformity that is completely lost in all of the independent theorizing about the
various linguistic phenomena. At the same time, it frees researchers working on
independent semantic problems to concentrate on their effects of interest without
inventing idiosyncratic mechanisms of scope, type-shifting, and combination.

In the coming chapters, we spell out some of the algebraic properties of these
effects. But first, let us lay some computational groundwork for the discussion.
As mentioned in Section 1.1, the compositional framework we will present out
is categorematic and type-driven. That is, the ways of interpreting a constituent
will depend only on the types of its daughters. Moreover, the rules determining
which pairs of types lend themselves to which modes of combination are going
to be entirely formal and decidable. You just have to look at the types and see if
they match the rules.

In other words, it should all be stupid enough that a computer can do it for
us. Let us then put our machine where our mouth is, and implement a very
simple type-driven interpreter. We will do this in the programming language
Haskell, whose construction and development has been heavily influenced by
the algebraic concepts discussed here. Unfortunately space precludes any proper
introduction to the constructs of Haskell, but the syntax was designed to mimic
standard mathematical notation, and we hope the code will be quite readable
even to those unfamiliar with the language.

1.5 Implementing a type-driven interpreter
To get the ball rolling, let’s start with the type system in Figure 1, setting

aside effects for now. Throughout this Element, we will build on this interpreter,
folding in the combinatoric operations that we introduce as we go.

Our goal here is to have the computer figure out every way that a sentence
can be interpreted, knowing only its constituency structure and the types of its
lexical items. As such, we focus here on the process of type-driven combination,
rather than any aspect of parsing. We will assume then that the sentences to
be interpreted are pre-assembled into constituents with typed leaves. Here is a
Haskell data type representing such parsed structures.
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data Syn
= Leaf Ty String
| Branch Syn Syn

data Ty
= E | T -- primitive types
| Ty :-> Ty -- function types

A piece of syntax Syn is either a Leaf containing a String (the name of
the lexical item) and a Ty (its type), or it’s a Branch ing node containing two
subtrees. A type Ty is either atomic — E or T — or complex — an arrow
between two other types.

The goal, again, is to determine the possible modes of combination for each
node and what the resulting type would be. It is, in effect, to induce the tree in
(1.12b) from that in (1.12a).

(e� t) � e
the

(e� t) � (e� t)
tallest

e� t
happy

e� t
cat

e� t
meowed

(1.12a)

t

e

(e� t) � e

(e� t) � e
the

(e� t) � (e� t)
tallest

e� t

e� t
happy

e� t
cat

e� t
meowed

<

>

◦ u

(1.12b)
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To do this, we define a data structure for type- and mode-annotated trees,
which we call Sem trees, analogous to the Syn trees defined above. A Sem

object is either a typed lexical item or a mode of combination together with two
daughters (themselves type- and mode-annotated trees). A mode of combination
Mode is, for now, just a tag indicating which of the modes from Figure 1 applies.

They are just Haskell versions of the symbols in (1.12b).

data Sem
= Lex Ty String
| Comb Ty Mode Sem Sem

data Mode
= FA -- forward application
| BA -- backward application
| PM -- predicate modification
| BC -- backward composition

-- other basic modes of combination, as desired

The engine of the type-driven logic is implemented by the function modes .
All it does is pattern-match on the two types that it is handed. If the left type
is an arrow type a :-> b and the right type is a , then FA is an applicable
mode of combination, and the result will be of type b . Vice versa for BA . If
both inputs are arrow types with co-domain T and identical domain types, then
PM applies. And so on.

modes :: Ty -> Ty -> [(Mode, Ty)]
modes l r = case (l, r) of

(a :-> b, _ ) | r == a -> [(FA, b)]
(_ , a :-> b) | l == a -> [(BA, b)]
(E :-> T, E :-> T) -> [(PM, E :-> T)]
(c :-> d, a :-> b) | b == c -> [(BC, a :-> d)]
-- ... == ...
_ -> []

Notice that result of applying modes to two types l and r is a list of
possible results. If any of the substantive cases match, the result is a singleton
list containing just the mode appropriate to that case. If none of them match,
the result is an empty list. So the result of any call of modes l r is at most a
singleton list. Thus the interpreter is deterministic. In later chapters, this will
not be the case. The result of combination may contain 0, 1, or more modes and
the corresponding result types.
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Finally, we define the interpreter synsem . Given a syntactic object Syn , it
returns a list of possible type- and mode-annotations: [Sem] . It does this by a
very straightforward recursion, bottoming out at the leaves. Given a branching
node Branch lsyn rsyn , it interprets the left branch, interprets the right branch,
and then combines the types of the results with modes . Because interpretation
is relational rather than functional, each of these actions yields not one, but a list
of intermediate results. The final collection of Sem annotations is determined
by taking each possible interpretation lsem of the left branch, each possible
interpretation rsem of the right branch, and each possible way of putting such
interpretations together to yield a new Comb ined constituent.

synsem :: Syn -> [Sem]
synsem syn = case syn of
(Leaf t w) -> [Lex t w]
(Branch lsyn rsyn) ->

[ Comb ty op lsem rsem
| lsem <- synsem lsyn
, rsem <- synsem rsyn
, (op, ty) <- modes (getType lsem) (getType rsem) ]

where
getType (Comb ty _ _ _) = ty



16 Elements in Semantics

2 Functors

2.1 Maps and mapping
The computational contexts encoded in the types of Table 2 are quite varied,

but they are all known to Category Theorists and computer scientists as functors.
Intuitively speaking, a constructor Θ is functorial if its parameter α remains
accessible to manipulation despite being embedded in the Θ structure. It should
moreover not make any difference what kind of thing α is. Just knowing how
it is situated inside the Θ structure should be enough to know how it could be
adjusted.

For instance, given a set of numbers 𝑆, and a function 𝑘 to update those
numbers, we can modify the members of 𝑆 by mapping 𝑘 over it, that is,
applying it pointwise.

(2.1) 𝑆 = {1, 2, 3} 𝑆′ = {𝑘 𝑛 | 𝑛 ∈ 𝑆}
𝑘 = λ𝑛. 𝑛 + 1 = {2, 3, 4}

We could do the same if 𝑘 converted numbers to strings.

(2.2) 𝑆 = {1, 2, 3} 𝑆′ = {𝑘 𝑛 | 𝑛 ∈ 𝑆}
𝑘 = λ𝑛. repeat𝑛 "a" = {"a", "aa", "aaa"}

Likewise if 𝑆 were full of entities, and 𝑘 a function from entities to Booleans.

(2.3) 𝑆 = {j,m, s} 𝑆′ = {𝑘 𝑥 | 𝑥 ∈ 𝑆}
𝑘 = λ𝑥. 𝑥 = j = {T, F}

In every case, the way a function 𝑘 looking for α-type argument is “applied”
to a set 𝑆 of α-type elements is the same: 𝑆′ = {𝑘 𝑎 | 𝑎 ∈ 𝑆}. Similarly, given a
pair𝑊 whose left coordinate is a number, and a function 𝑘 that updates numbers,
we can map 𝑘 over the pair by applying it just to the left coordinate.

(2.4) 𝑊 = 〈1, 𝑞〉 𝑊 ′ = 〈𝑘𝑊0, 𝑊1〉
𝑘 = λ𝑛. 𝑛 + 1 = 〈2, 𝑞〉

And again, it’s clear we could do the same thing no matter what the return type
of 𝑘 was, or indeed what kind of thing is sitting in the left coordinate. As long
as that coordinate is type α and 𝑘 :: α� β, this way of “applying” 𝑘 to 𝑊 will
be sensible.

Formally, a type constructor Θ is a functor if there is an operation (•) with
the type indicated in (2.5) respecting the two laws in (2.6).
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(2.5) (•) :: (α� β) � Θα� Θβ

(2.6) Identity: id • 𝑀 = 𝑀

Composition: 𝑓 • (𝑔 • 𝑀) = ( 𝑓 ◦ 𝑔) • 𝑀

That is, for an operation (•) to count as a map, it should not interact in any
way with the effect structure of Θ, concentrating all its energy on applying 𝑘

to the embedded α. So mapping the identity function id over a structure 𝑀

should not change anything at all about 𝑀 . This is because id does not change
the α element(s) in 𝑀 , and (•) does not change the non-α elements in 𝑀 or the
structure of 𝑀 itself. And mapping should be a homomorphism with respect
to function composition; it shouldn’t matter whether you map a composite
operation 𝑓 ◦ 𝑔 over 𝑀 , or first map 𝑔 over 𝑀 and then 𝑓 over the result. As it
happens, whenever (•) is defined by a polymorphic lambda term, the first law
entails the second (Wadler, 1989).

In Haskell, the (•) operation is known as fmap .

class Functor f where
fmap :: (a -> b) -> f a -> f b

For many type constructors Θ, the relevant mapping operation is utterly
straightforward, as often there is only one possible parametric function (•) ::
(a� b) � Θa� Θb. Indeed any constructor whose parameter instances α are
all in positive positions is guaranteed to be a functor, and its (•) mechanically
derivable. As it happens, this includes all of the examples in Table 2.

In fact, many of these effects are so essential to structuring programs that they
have canonical names in Haskell, defined more or less as in Table 3. The functor
instances of these constructors are defined in the standard prelude or in standard
libraries. We give simplified versions of these definitions in Appendix A2.

As seen in the table, many of the corresponding Haskell constructors have
additional type parameters. For instance, where we write GαF r� α, the corre-
sponding Haskell constructor is declared as data Reader r a = Reader (r -> a) .
The r here corresponds to the type of the environment that anaphoric compu-
tations read from. This environment can take a great variety of forms, and any
particular computation will need to specify which form is assumed. Likewise,
the W/ Writer effect is parameterized by what kind of values are stored in the
supplemental dimension, and the S/ State effect by how discourse contexts are
encoded, and so on. In formal presentations, we will leave these parameters
implicit to avoid typographic clutter, since these choices mostly do not matter
for our purposes. When we do make particular choices, we will discuss the
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Mathematical Type Haskell Type

GαF r� α data Reader r a = Reader (r -> a)

WαF α × t data Writer t a = Writer (a, t)

MαF α + ⊥ data Maybe a = Just a | Nothing

SαF {α} type S a = [a] -- our S constructor approximates

-- the built-in circumfix list constructor []

TαF s� (α × s) data State s a = State (s -> (a,s))

CαF (α� t) � t data Cont t a = Cont ((a -> t) -> t)

Table 3 Haskell conventions for common effect types

relevant types in surrounding prose.

2.1.1 Mapping as a mode of combination

How does any of this help with problems of composition stressed in Chapter 1?
No doubt the simplest thing to do would be to add (•) to the inventory of
combinatory modes, perhaps a forward version and a backward version in
analogy with ordinary forward and backward Function Application.

Such combinators, defined in Figure 3, provide for derivations like those
in (2.7). Both of the derived constituents in (2.7) combine a pronoun with an
ordinary predicate of entities. To keep things quite simple at the start, let us
adopt a variable-free view of anaphora, wherein the computations denoted by
pronouns are mere requests for antecedents, nothing more (see, e.g., P. Jacobson
1999; P. I. Jacobson 2014, et seq.). In this conception, anaphora resolution is
the process of choosing how such requests should be fulfilled (what values to
pass in for the open arguments), but the pronouns themselves do no semantic
selectional work. That is, a pronoun’s job is just to make the request, and then
to hand over the antecedent it receives for further composition.

Gt

λ𝑟. fell𝑟

Ge

λ𝑟. 𝑟

it

e� t
fell

fell

•<

G (e� t)
λ𝑔. saw𝑔

e� e� t
saw

saw

Ge

λ𝑔. 𝑔

it

•>

(2.7)
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Combinators

(>) :: (α� β) � α� β Forward Application
𝑓 > 𝑥 B 𝑓 𝑥

(<) :: α� (α� β) � β Backward Application
𝑥 < 𝑓 B 𝑓 𝑥

... Other Basic Combinators

(•>) :: (α� β) � Θα� Θβ Forward Map
𝑘 •> 𝑋 B 𝑘 • 𝑋

(•<) :: Θα� (α� β) � Θβ Backward Map
𝑋 •< 𝑘 B 𝑘 • 𝑋

Figure 3 Adding basic (•) combinators to the grammar

One nice aspect of the grammar in Figure 3 is that there is no substantive
difference between the way effect-typed expressions compose in subject vs.
object positions. As usual with natural language, a function may occur on either
the left or right of its argument, but the semantics is the same in both cases.
However, with just the combinatory inventory of Figure 3, it is not possible
to combine a computational predicate — type G (e� t) — with an ordinary
subject — e. This is because the mapping operation (•) always lifts an ordinary
function over an effectful argument (as opposed to applying an effectful function
to an ordinary argument). We could add further modes of combination that do
this using (•), or we could allow ordinary arguments to be lifted into ordinary
functions à la Partee (1986).

(·)lift :: α� (α� τ) � τ
𝑥lift B λ𝑘. 𝑘 𝑥

(2.8)

This is shown in (2.9).
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Gt

λ𝑟. saw𝑟m

(e� τ) � τ
λ𝑘. 𝑘m

e

m

Mary

G (e� t)
λ𝑟. saw𝑟

e� e� t
saw

saw

Ge

λ𝑟. 𝑟

it

lift

•>

•>

(2.9)

The real trouble for this simple-minded approach to incorporating functoriality
begins when an expression and its sister both denote computations. This situation
is illustrated in (2.10). Even with free lifting, there is no way to put the subject
and the predicate of (2.10) together.

???

Ge

λ𝑟 ′. 𝑟 ′

she

G (e� t)
λ𝑟. saw𝑟

e� e� t
saw

saw

Ge

λ𝑟. 𝑟

it

???

•>

(2.10)

2.2 Higher-order effects
The first step in redressing this unfortunate incomposability is deciding what

sort of thing (2.10) ought to denote. The type of the subject, Ge, indicates that
it needs an antecedent. The type of the predicate, G (e� t), indicates that it
also, independently, needs an antecedent. The denotation of the full sentence
should honor both of these requests, so its type should indicate that it needs two
antecedents.
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she saw it :: G (Gt)(2.11)
Jshe saw itK = λ𝑟λ𝑟 ′. saw𝑟 𝑟 ′(2.12)

We show here two ways to use the functoriality of G to make this happen.
Both take advantage of the following idea. Even though Ge and G (e� t) cannot
be combined (because neither can be mapped over the other), the underlying
type of the predicate, e� t, could be combined with the full type of the subject
Ge (as in (2.7)). And because G is a functor, we should be able to map this
underlying mode of combination over the predicate’s G shell. Since the mode
of combination that combines the subject, Ge, with the underlying type of the
predicate, e� t, is (•), what we need then is some way to map (•) itself over
the daughters.

2.2.1 Mapping in the language

The most direct route to this sort of higher-order mapping is to add (•) to the
object language. Then (•) might be mapped over a computation just the same
as any other function. This is effectively the strategy that P. Jacobson (1999)
adopts, though with combinators specific to G and none of our effect-oriented
conceit.1

G (Gt)

(Ge� τ) � τ

Ge

she

G (Ge� Gt)

(α� β) � Gα� Gβ
(•)

G (e� t)

e� e� t
saw

Ge

her

lift

•>

•>

•>

(2.14)

1The reader may wish to compare (2.14) to P. Jacobson’s (1999: p. 139) Example (31), given in
(2.13a), and transliterated to our notation in (2.13b) below. The translation proceeds by rewriting g0
as (•) and recognizing that P. Jacobson’s g𝑛 is equivalent to g0 g𝑛−1. Then in (2.13c), we write as
many (•)’s as possible as infix operators, yielding a logical form isomorphic to the tree in (2.14).

g0 (liftJhis motherK) (g1 (g0 JlovesKJhis dogK))(2.13a)
(•) (liftJhis motherK) ( (•) (•) ( (•) JlovesKJhis dogK))(2.13b)

liftJhis motherK • ( (•) • (JlovesK • Jhis dogK))(2.13c)
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Because all of the effects we’ve introduced are functorial, and the only
interesting aspects of the derivation in (2.14) are the (•)’s, the tree is a template
for composition with any of the enriched meanings of Table 2. For instance,
switching G for S, derives a multiple-‘wh’ question as in (2.15).

S (St)

(Se� τ) � τ

Se

which student

S (Se� St)

(α� β) � Sα� Sβ
(•)

S (e� t)

e� e� t
wrote

Se

which paper

lift

•>

•>

•>

(2.15)

Moreover, the various instances of (•) are completely independent. All that
matters is that the effects of the subject and object are both functorial; but they
needn’t be the same functor. So the template works just as well for sentences
containing different kinds of effects, rather than multiple instances of an effect,
as in (2.16).

G (St)

(Se� τ) � τ

Se

which student

G (Se� St)

(α� β) � Sα� Sβ
(•)

G (e� t)

e� e� t
saw

Ge

her

lift

•>

•>

•>

(2.16)

As straightforward as this solution is, there are a few potential reasons for
discontent. On the empirical side, effects can pop up just about anywhere,
including the daughters of constituents that would otherwise combine via
arbitrary modes of combination. As a result, (•) is not the only mode of
combination that will need to be mapped. For instance, as things stand there is
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no way to combine an ordinary property with an computational one.

???

G (e� t)

picture of her

e� t

on the shelf

???

(2.17)

Following (2.14), we would have to treat the Predicate Modification combi-
nator as a lexical item, or at least as a unary type-shifter like lift so that it can
be partially applied. Doing this would make possible the derivation in (2.18).

G (e� t)

G (e� t)

picture of her

(e� t) � e� t

(e� t) � (e� t) � e� t
(u)

e� t

on the shelf

•<

>

(2.18)

In this manner, eventually all modes of combination will need to be realized
lexically. Whether this is syntactically justifiable is open to debate, but it
certainly increases the distance between the forms that are uttered and the forms
that are interpreted. And as a practical matter, the resulting combinatorial
system is admittedly unwieldy. Even with practice, derivations are hard to
find. Sentences with multiple effects often require a great deal of creativity to
compose, mapping and lifting partially applied combinators over constituents.

Anyone who needs convincing of this should try deriving the sentence in
(2.14) so that the subject’s antecedent-request outscopes the object’s. That is,
the blue G should precede the red G in the final type signature G (Gt). Worse,
given that combinators can apply to one another iteratively and without bound,
it can be exceedingly difficult to rule analyses out. You never know when some
cleverer insertion of maps and lifts would do the trick.
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2.2.2 Mapping as a higher-order mode of combination

For these reasons, we offer an alternative to the P. Jacobsonian vision. Once
more, the key to putting together sentences with multiple non-interacting effects
is the ability to map (•) itself. But as seen in (2.18), this is not enough. We
will want to be able to map an arbitrary mode of combination (∗) over one of
the daughters. In the previous section, this was accomplished by embedding
combinators in the object language and using •> as a binary mode of combination
to partially apply them to the relevant daughters one at a time.

Instead, we might just as well provision the grammar with a means of
constructing complex combinators from simpler ones, just as complex types
are constructed from smaller types. In general, if there is a mode (∗) that can
combine constituents 𝐸1 :: σ and 𝐸2 :: τ, then there should also be a mode
to combine constituents 𝐸1 :: σ and 𝐸 ′

2 :: Θτ, provided that Θ is a functor.
Intuitively, there is a τ thing sitting inside 𝐸2, just waiting to be combined via
(∗) with 𝐸1. So that enriched mode should map (λ𝑏. 𝐸1 ∗ 𝑏) over 𝐸2. And
likewise if 𝐸 ′

1 is of type Θσ. The enriched mode should map (λ𝑎. 𝑎 ∗ 𝐸2)
over 𝐸 ′

1. These mode-transforming operations are defined in (2.19). And the
complete grammar incorporating these is given in Figure 4.

L (∗) 𝐸1 𝐸2 B (λ𝑎. 𝑎 ∗ 𝐸2) • 𝐸1

R (∗) 𝐸1 𝐸2 B (λ𝑏. 𝐸1 ∗ 𝑏) • 𝐸2

(2.19)

With the ability to map arbitrary modes of combination over computations
on either side, we can put together syntactically uncluttered derivations with a
single effect, no matter where the effect occurs.

Gt

Ge

it
e� t
fell

L<

Gt

e

Mary
G (e� t)

e� e� t
saw

Ge

it

R<

R>

G (e� t)

G (e� t)

picture of her

e� t

on the shelf

Lu

G (e� t)

e� t

picture of Mary

G (e� t)

on his shelf

Ru

(2.20)
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Types:

τF e | t | . . . Primitive types
| τ� τ Function types
| τ × τ Product types
| τ + τ Sum types
| {τ} Powerset types
| Στ Computation types

Effects:

ΣF G Reading
| W Writing
| S Indeterminacy
| . . .

Basic Combinators:

(>) :: (α� β) � α� β Forward Application
𝑓 > 𝑥 B 𝑓 𝑥

(<) :: α� (α� β) � β Backward Application
𝑥 < 𝑓 B 𝑓 𝑥

(u) :: (e� t) � (e� t) � e� t Predicate Modification
𝑓 u 𝑔 B λ𝑥. 𝑓 𝑥 ∧ 𝑔 𝑥

. . .

Meta-combinators:

L :: (σ� τ� ω) � Θσ� τ� Θω Map Left
L (∗) 𝐸1 𝐸2 B (λ𝑎. 𝑎 ∗ 𝐸2) • 𝐸1

R :: (σ� τ� ω) � σ� Θτ� Θω Map Right
R (∗) 𝐸1 𝐸2 B (λ𝑏. 𝐸1 ∗ 𝑏) • 𝐸2

Figure 4 A type-driven grammar with functorial effects
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2.3 Effect layering
Importantly, the operators in (2.19) are iterative in the sense that they take a

binary mode (∗) and return a new binary mode, L∗ or R∗. This means they can
in principle apply to their own output. For instance, since L∗ is a binary mode,
L (L∗) is yet another mode, as is R (L∗), and likewise for L (R∗) and R (R∗).

What do these higher-order combinators amount to? Particularly illuminating
are the cases where both daughters are computations: L (R∗) and R (L∗).
Cranking through the definitions gives:

(2.21) L (R∗) = λ𝐸1λ𝐸2. (λ𝑎. (λ𝑏. 𝑎 ∗ 𝑏) • 𝐸2) • 𝐸1

R (L∗) = λ𝐸1λ𝐸2. (λ𝑏. (λ𝑎. 𝑎 ∗ 𝑏) • 𝐸1) • 𝐸2

Just for illustrative purposes, let us rewrite these equations with the order of (•)’s
arguments flipped, so that the computation comes first and the to-be-mapped
function second. That is, let’s swap out (•) for (•<), making the relevant
adjustments. This gives the equations in (2.22).

(2.22) L (R∗) = λ𝐸1λ𝐸2. 𝐸1 •< (λ𝑎. 𝐸2 •< (λ𝑏. 𝑎 ∗ 𝑏))
R (L∗) = λ𝐸1λ𝐸2. 𝐸2 •< (λ𝑏. 𝐸1 •< (λ𝑎. 𝑎 ∗ 𝑏))

In this form, the derived higher-order modes reveal a striking resemblance to
derivations invoking Quantifier Raising (though most functors have nothing to
do with quantification and there is certainly no raising), as illustrated below.

𝐸2

λ𝑏

𝐸1

λ𝑎

𝑎 𝑏

𝐸1

λ𝑎

𝐸2

λ𝑏

𝑎 𝑏

•<

•<

∗

•<

•<

∗

We discuss the relationship between scope and effects in Chapter 4, but
it is worth noting that the diagrams above already suggest a sense in which
computation-denoting constituents take scope over their compositional contexts.
Choosing to map anything over the L-eft daughter gives the left daughter’s
effect priority over whatever is mapped. For instance, if both daughters request
antecedents, then the left daughter’s request will come first. Choosing instead to
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map something over the R-ight daughter gives the right daughter’s effect priority.
The difference can be seen in (2.23).

G (Gt)

Ge

she
G (e� t)

e� e� t
saw

Ge

her

R (L<)

R>

G (Gt)

Ge

she
G (e� t)

e� e� t
saw

Ge

her

L (R<)

R>

(2.23)

What this priority amounts to depends on the nature of the effect. But
because the operations involved here work for any functorial constructor, we
can immediately combine constituents with different kinds of effects, often in
multiple ways. For instance, a context-sensitivite predicate and an indeterminate
subject can be combined in the two ways shown in (2.24).

G (St)

Se

which student

G (e� t)

e� e� t
saw

Ge

her

R (L<)

R>

(2.24a)

S (Gt)

Se

which student

G (e� t)

e� e� t
saw

Ge

her

L (R<)

R>

(2.24b)

As it happens, both of these denotations have been proposed in the literature
on questions. The former, (2.24a), appears in Charlow (2020); Hagstrom (1998);
Hamblin (1973); Kratzer and Shimoyama (2002), among others. The latter,
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(2.24b), appears in, e.g., Poesio 1996; Romero and Novel 2013; Rooth 1985.
Recognizing that both of these effects are functorial and allowing a more flexible
approach to composition means that for sentences like this, there is no reason
to choose one over the other. We needn’t generalize to either potential “worst
case”.

2.4 Functors and pseudoscope
Absent any sort of closure operators, which we discuss in Chapter 3, functorial

effects percolate up the tree in which they’re composed. This is plainly evident
from the types. In (2.25), for example, the genitive pronoun embedded in
the object introduces an anaphoric dependency to the denotation, and that
dependency is inherited by every node dominating it in the tree.

Gt

e

Mars
G (e� t)

e� e� t
outshone

Ge

(e� t) � e
the

G (e� t)

e� t
star

G (e� t)

e� e� t
on

Ge

Ge

its
e� e
left

R<

R>

R>

Ru

R>

R<

(2.25)

Once composed, the entire sentence becomes context-dependent; it requests
an antecedent in order to compute a truth value. In a sense, then, the pronoun’s
computational effect — requesting an antecedent — is displaced from the
location of the pronoun itself. In fact, the whole derivation is equivalent to what
we’d get if we “Quantifier”-Raised the pronoun and mapped in its syntactic
context, as in (2.26).
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Gt

Ge

its
e� t

λ𝑥 t

e

Mars
e� t

e� e� t
outshone

e

(e� t) � e
the

e� t

star on 𝑥 left

R<

<

>

>

(2.26)

With a little effort, this equivalence can be seen to follow from the Law of
Composition (2.6). Just rewriting the law as in (2.27) using the combinators
introduced in this chapter, together with a suggestive arrow, gets most of the
way there.

𝑓 •> (𝑔 •> 𝑀) = 𝑀 •< (λ𝑥. 𝑓 > (𝑔 > 𝑥))(2.27)

Since the equivalence is algebraic rather than due to some quirk of context-
dependence, it guarantees that for any functorial effect, mapping can be seen
as a means of giving the effect scope over its compositional context. That is,
repeatedly mapping over an embedded computation is equivalent to scoping the
computation out of the way and mapping once where it lands.

But importantly, the scope provided by (•) does not depend on any as-
sumptions about syntactic transformations. In particular, there is no reason to
expect effect-percolation to exhibit sensitivity to the sorts of islands that govern
movement. And indeed, all of the effects in Table 2 — with the exception of
quantifiers, which we return to in Chapter 5 — are island insensitive.

For instance, consider the examples in (2.28).

Who remembers when who left?(2.28a)
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Mary only gets mad when JOHN leaves the lights on(2.28b)

Mary said that if John’s car is in the garage, then he’s home(2.28c)

Mary knows that if her cat, named Sassy, is home, then John is too(2.28d)

These sentences all contain an effect-denoting expression within an island,
either an embedded question or embedded adjunct. Yet they all also have
readings in which the semantic force of that embedded expression is felt outside
of the island. For example, the question in (2.28a) has a reading in which it
asks which pairs of people 〈𝑎, 𝑏〉 are such that 𝑎 knows when 𝑏 left. The
sentence in (2.28b) declares John to be the only person such that Mary gets mad
when he leaves the lights on. (2.28c), as a whole, presupposes that John has
a car, even though the presupposition trigger ‘John’s car’ is in an embedded
hypothetical. Likewise, (2.28d) commits the speaker to Mary’s cat being named
Sassy, regardless of what Mary knows or whether her cat is home.

In these construals, the effect-generating expressions are sometimes said
to take exceptional scope over the islands that embed them. The capacity for
exceptional scope is a hallmark of a functorial effect.

2.5 Implementing functorial effects in the type-driven interpreter
Notice that, as in the single-effect derivations of (2.20), the new multi-effect

derivations are syntactically spare. Nothing is inserted and no types are shifted.
In other words, composition remains type-driven in the sense that every possible
way of interpreting a combination of two expressions is determined by their
types.

As discussed in Chapter 1, one of the main benefits of this approach is that it
takes the creativity out of composition. Given the grammar in Figure 4, there is
an effective procedure for determining all the possible combinations of any two
types, just as there was for the basic grammar in Figure 1. In this section, we
extend the interpreter of Section 1.5 to cover the grammar of Figure 4.

First, we need to expand our representation of types to incorporate type
constructors modeling effects. Following Figure 4, we say that a type Ty can
be atomic or functional, as before, but also now computational. A computation
type is parameterized by an effect Eff , which we discuss below.
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data Ty
= E | T -- primitive types
| Ty :-> Ty -- function types
| Comp Eff Ty -- computation types

Next, we expand our inventory of combinatory modes. The new modes R
and L are meta-combinators; they take modes as arguments and return modes.

R (∗) 𝐸1 𝐸2 B (λ𝑏. 𝐸1 ∗ 𝑏) • 𝐸2

L (∗) 𝐸1 𝐸2 B (λ𝑎. 𝑎 ∗ 𝐸2) • 𝐸1

(2.29)

Our representations MR and ML meta-combinators are thus parameterized by
this underlying mode (∗) :: Mode .

data Mode
= FA | BA | PM -- basic modes of combination
| MR Mode | ML Mode -- map right and map left

As far as type-driven combination is concerned, the only thing we need to
know about an effect is its label, and whether or not it is a functor. None of
the grammatical, combinatoric operations inspect the internal structure of an
effect. Indeed, this is the whole point of the algebraic abstractions. Knowing
that an effect Θ is functorial is enough to know that it can be combined using
R/L. Of course the actual semantics will depend on how the effect is encoded (is
it a product, a set, a function into sets, etc.?) and how (•) is defined for that
encoding, but the type logic itself needn’t bother with such matters.

Consequently, the representation of effects Eff includes just enough infor-
mation to drive the combinatorics, namely a label indicating what kind of effect
it is and parameters for whatever incidental data the computation is specialized
to (the type of the environment it reads from, or the type of the data that it stores,
or the type of context it quantify overs, etc.). Note that all of the effects we
consider here are functors, so the functor predicate happens to be vacuous.
But we include it for good measure, and to set the stage for future chapters.



32 Elements in Semantics

data EffX
= SX -- computations with indeterminate results
| GX Ty -- computations that query an environment of type Ty
| WX Ty -- computations that store information of type Ty
| CX Ty Ty -- computations that quantify over Ty contexts
-- and so on for other effects, as desired

functor :: EffX -> Bool
functor _ = True

With these representations fixed, we define the logic of combination. This is
again a simple matter of pattern-matching on the types of the daughters. For
starters, if the daughters l and r can be combined via any of the basic modes
of combination from Chapter 1, then go for it. Recall that the function modes

returns a list containing whatever basic Mode s are applicable to combining l

and r , together with the Ty pe that would result from so combining them.

In addition, we check for two other possibilities. The function addMR returns
an empty list — adding no new modes of combination to what the basic modes

was able to find — unless the right daughter’s type is a computation type
Comp f t with a functorial effect f . If it is, then we try to combine the left

daughter l with the right daughter’s underlying type t . That recursive call
will produce a list of possible Mode s and resulting Ty pes. If there is no way
to combine l and t , then the new list will again be empty, adding nothing
to the basic modes . But if it is possible the combine l and t , then for each
way of doing so (op, u) , we build a new higher-order mode MR op , signaling
that op can be mapped over the right daughter, resulting in a combined type
Comp f u .

The case for checking that the left daughter l is functorial is exactly sym-
metric to the right one. Importantly, these two investigations addMR and addML

are not exclusive. If both daughters are functorial, and the underlying types can
be combined, they will both return new substantive modes of combination.
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combine :: Ty -> Ty -> [(Mode, Ty)]
combine l r =
-- see if any basic modes of combination work
modes l r
-- if the right daughter is functorial, try to map over it
++ addMR l r
-- if the left daughter is functorial, try to map over it
++ addML l r

addMR l r = case r of
Comp f t | functor f

-> [ (MR op, Comp f u) | (op, u) <- combine l t ]
_ -> [ ]

addML l r = case l of
Comp f s | functor f

-> [ (ML op, Comp f u) | (op, u) <- combine s r ]
_ -> [ ]

Finally, the top-level interpreter that annotates trees is exactly as it was in
Chapter 1, except that the basic modes function is upgraded to the recursive
combine function.

synsem :: Syn -> [Sem]
synsem syn = case syn of
(Leaf t w) -> [Lex t w]
(Branch lsyn rsyn) ->

[ Comb ty op lsem rsem
| lsem <- synsem lsyn
, rsem <- synsem rsyn
, (op, ty) <- combine (getType lsem) (getType rsem) ]

where
getType (Comb ty _ _ _) = ty
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3 Applicative Functors

3.1 Effects that amalgamate
As seen in Chapter 2, one of the benefits of using (•) or R / L for composition

is that it accommodates any number and variety of computations. One way or
another, the computational side effects, whatever their shape, are passed over in
order to get at the underlying argument-structural results and put them together.

However, this means that when two effects are combined, the result is
necessarily higher-order, a computation that returns another computation. For
instance, with two ‘wh’-expressions, we end up with a set of sets of propositions.
With two pronouns, we end up with a function from an antecedent to a function
from an antecedent to a proposition. And so on.

S (St)
{{chasec | cat𝑐} | dog𝑑}

Se

{𝑑 | dog𝑑}

which dog

S (e� t)
{chase𝑐 | cat𝑐}

e� e� t
chased

Se

{𝑐 | cat𝑐}

which cat

L (R<)

R>

G (Gt)
λ𝑟 ′λ𝑟. call𝑟 𝑟 ′

Ge

λ𝑟 ′. 𝑟 ′

she

G (e� t)
λ𝑟. call𝑟

e� e� t
called

Ge

λ𝑟. 𝑟

her

L (R<)

R>

(3.1)

Even among theories that countenance these sorts of higher-order meanings,
they are not generally thought to represent the default interpretations of such
sentences, much less their only interpretations. Consider, for instance, the typical
variable-full format for managing pronouns (Heim & Kratzer, 1998). Every
constituent is evaluated relative to a variable assignment, whether it contains
pronouns or not. If it does, those pronouns project particular coordinates of the
assignment. If it does not, the assignment is ignored. And importantly, when
two sisters are both evaluated, they are evaluated at the same assignment.

A fragment with this shape is outlined in Figure 5. Compared to the grammar
in Figure 4, several things stand out. The environment-sensitivity effect is always
outermost in a type; every expression’s type is of the form Gσ, for some ordinary
type σ. Accordingly, all of the modes of combination expect their daughters to be
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environment-sensitive, and return an environment-sensitive result. This means
that lexical items themselves must all be coerced into environment-reading
computations, whether they pay any attention to the environment or not.

Exactly the same pattern emerges in a standard Hamblin grammar for
questions (Hamblin, 1973), as sketched in Figure 6. Every constituent denotes
an indeterminate computation — modeled by the set of values it might return —
whether that constituent contains a ‘wh’-expression or not. If it does, then the
‘wh’-expressions generate genuine alternatives. If it does not, then the denotation
is a singleton value. Importantly, when two sisters are both evaluated, they are
evaluated pointwise, so that the alternatives generated in the two daughters are
amalgamated into a single large set.

Again, as seen in Figure 6, indeterminacy is pervasive and top-level; every
expression’s type is of the form Sσ. All the modes of combination expect
indeterminate daughters, and return indeterminate results. And all lexical
items are coerced into indeterminate computations, whether they generate any
alternatives or not.

Putting these grammars to work is straightforward, at least in examples like
those in (3.1).

St

{chase𝑐 𝑑 | cat𝑐, dog𝑑}

Se

{𝑑 | dog𝑑}

which dog

S (e� t)
{chase𝑐 | cat𝑐}

S (e� e� t)
chased

Se

{𝑐 | cat𝑐}

which cat

< S

>S

Gt

λ𝑔. call𝑔1 𝑔0

Ge

λ𝑔. 𝑔0

she0

G (e� t)
λ𝑔. call𝑔1

G (e� e� t)
called

Ge

λ𝑔. 𝑔1

her1

< G

>G

(3.2)

However, both of these grammars are examples of generalization to the worst
case, forcing every constituent to be as structurally complex as the constituents
of semantic interest. Unfortunately, neither case is as bad as it can get. Simply
mixing the two kinds of phenomena is beyond the reach of either grammar. The
rigid, pervasive replacement of ordinary combinatory modes with effect-specific
variants limits the applicability of the fragment to just the specific effects
described. What is gained in uniformity and simplicity is sacrificed in flexibility
and extsensibility.
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Types:
σF e | t | . . . Primitive pre-types

| σ� σ Function pre-types
τF Gσ Expression types

Combinators:
( >G) :: G (α� β) � Gα� Gβ

𝐹 >G 𝑋 B λ𝑔. 𝐹 𝑔 (𝑋 𝑔)

(< G) :: Gα� G (α� β) � Gβ
𝑋 < G 𝐹 B λ𝑔. 𝐹 𝑔 (𝑋 𝑔)

. . .

Lexicon:
it𝑛 :: Ge
B λ𝑔. 𝑔𝑛

Mars :: Ge
B λ𝑔.m

cat :: G (e� t)
B λ𝑔. cat

. . .

Figure 5 Env.-sensitive grammar

Types:
σF e | t | . . . Primitive pre-types

| σ� σ Function pre-types
τF Sσ Expession types

Combinators:
( >S) :: S (α� β) � Sα� Sβ

𝐹 >S 𝑋 B { 𝑓 𝑥 | 𝑓 ∈ 𝐹, 𝑥 ∈ 𝑋}

(< S) :: Sα� S (α� β) � Sβ
𝑋 < S 𝐹 B { 𝑓 𝑥 | 𝑓 ∈ 𝐹, 𝑥 ∈ 𝑋}

. . .

Lexicon:
who :: Se

B {𝑥 | person𝑥}

Mars :: Se
B {m}

cat :: S (e� t)
B {cat}

. . .

Figure 6 Indeterminate grammar
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3.2 Applicative Functors
Fortunately, the underlying strategy of both the Heim and Kratzer (1998)

grammar for environment-sensitivity and the Hamblin (1973) grammar for
interrogativity can be made modular and algebraic, in line with the generic
mapping operation (•) of Chapter 2. The essential components of both strategies
is a pair of operations: foremost, a means of composing a computation that
yields a function Θ (α � β) with one that yields an argument Θα to form a
computation yielding a result Θβ; and secondarily, a means of injecting an
ordinary value α into a unitary, or “trivial”, computation.

Intuitively, a computation is trivial if it adds no effect of any consequence. It
is a computation that does nothing except return a value. A trivial environment-
sensitive computation is one that requests an environment but makes no use of it,
so that it doesn’t really read from the environment at all. A trivial indeterminate
computation is one that computes exactly one thread, so that there isn’t really
any parallelism to speak of.

Technically, what it means for a computation to be trivial depends on how
effect-generating functions and effect-generating arguments are combined, and
in particular on how the effects that they generate are combined. This is the
only way to know whether the potentially trivial effect really does not change
anything. One natural abstraction for this sort of relationship is known as an
applicative functor (Kiselyov, 2015; McBride & Paterson, 2008), which we’ll
call an applicative for short.

A type constructor Θ is an applicative functor if there are operations 𝜂 and
(~) with the types indicated in (3.3) respecting the laws in (3.4).

𝜂 :: α� Θα(3.3)
(~) :: Θ (α� β) � Θα� Θβ

(3.4) Homomorphism Identity
𝜂 𝑓 ~ 𝜂𝑥 = 𝜂 ( 𝑓 𝑥) 𝜂 (λ𝑥. 𝑥) ~ 𝑣 = 𝑣

Interchange Composition
𝜂 (λ 𝑓 . 𝑓 𝑥) ~ 𝑢 = 𝑢 ~ 𝜂𝑥 𝜂 (◦) ~ 𝑢 ~ 𝑣 ~ 𝑤 = 𝑢 ~ (𝑣 ~ 𝑤)

In Haskell, these operations are known as pure and ap .

class Functor f => Applicative f where
pure :: a -> f a
ap :: f (a -> b) -> f a -> f b
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It’s easy to see that the combinators and implicit lexical coercion mechanisms
of Figures 5 and 6 constitute G and S applicative functors, respectively:

𝜂G 𝑥 B λ𝑔. 𝑥 𝜂S 𝑥 B {𝑥}(3.5)
𝐹 ~G 𝑋 B λ𝑔. 𝐹 𝑔 (𝑋 𝑔) 𝐹 ~S 𝑋 B { 𝑓 𝑥 | 𝑓 ∈ 𝐹, 𝑥 ∈ 𝑋}

In fact, all of the effects in Table 2 have corresponding applicative instances.
We provide the standard applicative instances of these types in Appendix A3.
For some of the effects, there are even multiple ways of defining (~) that
satisfy the laws. And as might be expected from the terminology, all applicative
functors are functors, in that any way of defining 𝜂 and (~) that satisfy the laws
in (3.4) will determine a way of defining (•) that satisfies the laws in (2.6), by
way of the equation in (3.6).

𝑘 • 𝑚 ≡ 𝜂 𝑘 ~ 𝑚(3.6)

Putting these operations to work in deriving natural language meanings looks
much the same as it did in Chapter 2. Clearly (~) might be added without any
imagination as a potential mode of combination. This is just the strategy of the
grammars in Figures 5 and 6 above. The coercion operator 𝜂 is unary, unlike (•)
and (~), so could be added as a type-shifter, like lift. Then derivations would
then look much the same as in (3.1), except that the transitive verbs would be
shifted by 𝜂 before combination.

The trouble with this straightforward approach is also the same as in Chapter 2.
There is no general way to combine constituents with multiple effects. That
is, while (~) guarantees a way to put together two type-S constituents, or two
type-G constituents, it does not by itself suffice as a means to combine two GS
constituents, or two SG constituents. And such constituents are by no means
exotic. All it takes is a left branch with an alternative generator and a pronoun,
and a right branch with an alternative generator and a pronoun, as in (3.7).

???

G (Se)
λ𝑔. {𝑑 | dog𝑔0 𝑑}

which of her0 dogs

G (S (e� t))
λ𝑔. {chase𝑐 | cat𝑔1 𝑐}

e� e� t
chased

G (Se)
λ𝑔. {𝑐 | cat𝑔1 𝑐}

which of his1 cats

???

R (R>)

(3.7)
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The solutions to higher-order applicative combination are again the same as
in Chapter 2. The problem is that G (Se) and G (S (e� t)) cannot be combined
via < G because neither G-computation delivers a function. They both deliver
further computations: Se and S (e� t). But of course, those computations can
be combined via < S. And since G is an applicative functor, we should be able
to map the < S mode of combination over the outer G layer, merging the two G
effects in the process.

3.2.1 Applicatives in the language

Adding 𝜂 and (~) as polymorphic lexical items certainly opens the door to
this sort of higher-order mapping (Charlow, 2018, 2022).

G (St)
λ𝑔. {chase𝑐 𝑑 | cat𝑔1 𝑐, dog𝑔0 𝑑}

G (Se)
λ𝑔. {𝑑 | dog𝑔0 𝑑}

which of her0 dogs

G (Se) � G (St)

G (Se� St)

S (α� β) � Sα� Sβ
~

G (S (e� t))
λ𝑔. {chase𝑐 | cat𝑔1 𝑐}

chased which of his1 cats

G (α� β) � Gα� Gβ
~

<

<

R>

(3.8)

But this approach faces all the same challenges as adding (•) to the object
language did in Chapter 2. Namely, it takes a great deal of ingenuity to find
derivations, when they exist, and even more ingenuity to figure out when they
don’t. And the derivations that result may be full of syntactically suspect
combinatory operators.
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3.2.2 Structured application as a higher-order mode of combination

So we follow the strategy of Section 2.2.2, provisioning the grammar with
a means of applying an arbitrary combinator to the underlying values of two
computations, amalgamating their effects in a singly-layered structure. That is,
whenever there is a mode (∗) that can combine constituents 𝐸1 :: σ and 𝐸2 :: τ,
then there should also be a mode to combine constituents 𝐸 ′

1 :: Θσ and 𝐸 ′
2 :: Θτ,

if Θ is an applicative functor. Intuitively, there is a σ thing sitting inside 𝐸 ′
1, and

a τ thing sitting inside 𝐸 ′
2, both ready to be combined via (∗). And since Θ is

applicative, there is a way of zipping the computational contexts of 𝐸 ′
1 and 𝐸 ′

2
together. The relevant higher-order combinator is defined in (3.9).

A (∗) 𝐸1 𝐸2 B 𝜂 (∗) ~ 𝐸1 ~ 𝐸2(3.9)

Then the modes of combination from the Heim and Kratzer and Hamblin
grammars in Figures 5 and 6 are recovered as in (3.10).

> ≡ A (>)
< ≡ A (<)

(3.10)

And the earlier derivations involving one kind of effect at a time are recovered
as in (3.11).

St

{chase𝑐 𝑑 | cat𝑐, dog𝑑}

Se

{𝑑 | dog𝑑}

which dog

S (e� t)
{chase𝑐 | cat𝑐}

e� e� t
chased

Se

{𝑐 | cat𝑐}

which cat

A<

R>

Gt

λ𝑔. call𝑔1 𝑔0

Ge

λ𝑔. 𝑔0

she

G (e� t)
λ𝑔. call𝑔1

e� e� t
called

Ge

λ𝑔. 𝑔1

her1

A<

R>

(3.11)

The troubling composite-effect sentence of (3.7) is now derived as in (3.12).
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G (St)
λ𝑔. {chase𝑐 | cat𝑔1 𝑐}

G (Se)
λ𝑔. {𝑑 | dog𝑔0 𝑑}

which of her0 dogs

G (S (e� t)) λ𝑔. {chase𝑐 | cat𝑔1 𝑐}

e� e� t
chased

G (Se)
λ𝑔. {𝑐 | cat𝑔1 𝑐}

which of his1 cats

A (A<)

R (R>)

(3.12)

The combination of R/L and A provides a lot of flexibility. For instance, the
effects needn’t be balanced the way they are in (3.12) in order to take advantage
of (~). Examples of computationally imbalanced daughters are shown in (3.13)
and (3.14). Outer effects may be amalgamated with A while inner ones are
mapped over, or vice versa.

G (St)
λ𝑔. {chase𝑐 𝑑 | cat𝑔1 𝑐, dog𝑑}

Se

{𝑑 | dog𝑑}

which dog

G (S (e� t))
λ𝑔. {chase𝑐 | cat𝑔1 𝑐}

e� e� t
chased

G (Se)
λ𝑔. {𝑐 | cat𝑔1 𝑐}

which of his1 cats

R (A<)

R (R>)

(3.13)

G (St)
λ𝑔. {chase𝑔1 𝑑 | dog𝑔0 𝑑}

G (Se)
λ𝑔. {𝑑 | dog𝑔0 𝑑}

which of her0 dogs

G (e� t)
λ𝑔. chase𝑔1

e� e� t
chased

Ge

λ𝑔. 𝑔1

it1

A (L<)

R>

(3.14)
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3.3 Selectivity and unselectivity
As discussed in Section 2.4, the functoriality of an effect gives rise to a kind

of exceptional scope-taking. Barriers to movement obviously exert no direct
influence on the scope of an effect, since the generators of effects do not move
(or certainly do not need to move for their effect to spread upward). And barriers
to quantifier scope, if they are separate from those for movement, likewise hold
no particular sway over the percolation of effects since effects are not generally
quantificational. In other words, island boundaries are simply mapped over
effectful computations, just like ordinary predicates.

But this is not to say it is impossible to operate on a computation itself, as
opposed to the value it computes. Such operators, which we will refer to broadly
as closure operators, come in two flavors, distinguished more by their linguistic
role than their formal properties. On the one hand, there are linguistic items
thought to associate with an effect in an essential capacity. The way we will
use the term, an expression associates with an effect Θ if it takes an argument
of type Θα, for some type α. That is, the expression’s semantics is expecting a
particular type of computation. The canonical examples in this category are
focus-sensitive items like ‘only’ and ‘also’ (Rooth, 1985).

only :: Ft� t
JonlyK B λ𝑚. {𝑝 ∈ snd𝑚 | 𝑝} = {fst𝑚}

(3.15)

We would also include alternative-sensitive expressions in this category like
Japanese ‘mo’ and ‘ka’ (Kratzer & Shimoyama, 2002; Shimoyama, 2006) or even
ordinary question-embedding attitudes like ‘wonder’ (Groenendijk & Stokhof,
1984). Likewise, any dynamic semantic operation, such as is often proposed for
negation or quantificational determiners (e.g., Muskens (1990, 1996)), would
count as associating with the dynamic effects generated by their arguments. The
same goes for operators that bind pronouns, altering the environments that their
prejacents are evaluated in. And so on.

mo :: St� t
JmoK B λ𝑚.

∧
𝑚

(3.16a)

wonder :: St� e� t
JwonderK B λ𝑚λ𝑥.wonder𝑚𝑥

(3.16b)
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not :: Dt� Dt
JnotK B λ𝑚λ𝑠. {〈¬∃𝑥. 〈𝑥, T〉 ∈ 𝑚 𝑠, 𝑠〉}

(3.16c)

𝜆𝑛 :: Gβ� e� Gβ
J𝜆𝑛K B λ𝑚λ𝑥λ𝑔. 𝑚 𝑔[𝑛 ↦→ 𝑥]

(3.16d)

On the other hand, there are a smattering of covert operators usually associated
with some sort of complete evaluation domain, often a clause. Semantically,
these sorts of operators might be thought of as executing the computations
that their prejacents denote, and evaluating the results. The most well-known
examples are the many varieties of existential closure used in alternative- and
dynamic-semantic settings (e.g., Heim 1982; Kratzer and Shimoyama 2002).
But also possibly in this category are various exhaustivity operators (e.g.,
Krifka 1995), the “lowering” operations of continuation semantics (Barker,
2002; Barker & Shan, 2014), and any mechanism for locally accommodating a
presupposition (e.g., Beaver and Krahmer 2001).

∃-clo :: St� t
J∃-cloK B λ𝑚.

∨
𝑚

(3.17a)

lower :: Ct� t
JlowerK B λ𝑚. 𝑚 (λ𝑝. 𝑝)

(3.17b)

Assert :: Mt� t
JAssertK B λ𝑚. F if 𝑚 = # else 𝑚

(3.17c)

When a constructor Θ is applicative, any operator  :: Θσ�τwill in principle
close over every effect in its scope simultaneously. Operators like this are
sometimes said to be unselective, on analogy with the unselective binding of
indefinites found in Lewis (1975) and Heim (1982). For instance, consider the
conditional in (3.18). Thanks to the applicativity of S, a single existential closure
operator manages to capture the scope of all the indefinites in the antecedent.
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t

if (∃𝑥, 𝑢, 𝑦. put𝑥 𝑢 𝑦) (leftm)

t� t
if (∃𝑥, 𝑢, 𝑦. put𝑥 𝑢 𝑦)

t� t� t
if

t

∃𝑥, 𝑢, 𝑦. put𝑥 𝑢 𝑦

St� t
∃-clo

St

{put𝑥 𝑢 𝑦 | thing𝑥, place𝑢, person 𝑦}

Se

someone
S (e� t)

{put𝑥 𝑢 | thing𝑥, place𝑢}

S (e� e� t)
{put𝑥 | thing𝑥}

e� e� e� t
put

Se

something

Se

somewhere

t

leftm

Mary left

>

>

>

A<

A>

R>

(3.18)

At the same time, every applicative functor is still a functor, which suffices
to establish higher-order derivations of the antecedent. Unless something
precludes such derivations, this predicts the availability of various exceptional-
scope readings. For instance, (3.19) mimics the derivation in (3.18) except that
the alternatives generated by the direct object are consistently mapped-over at
every node. The alternatives generated by the other two indefinites are merged
as above and jointly closed over in the antecedent.
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St

{if (∃𝑢, 𝑦. put𝑥 𝑢 𝑦) (leftm) | thing𝑥}

S (t� t)
{if (∃𝑢, 𝑦. put𝑥 𝑢 𝑦) | thing𝑥}

t� t� t
if

St

{∃𝑢, 𝑦. put𝑥 𝑢 𝑦 | thing𝑥}

St� t
∃-clo

S (St)
{{put𝑥 𝑢 𝑦 | place𝑢, person 𝑦} | thing𝑥}

Se

someone
S (S (e� t))

{{put𝑥 𝑢 | place𝑢} | thing𝑥}

S (e� e� t)
{put𝑥 | thing𝑥}

e� e� e� t
put

Se

something

Se

somewhere

t

leftm

Mary left

L>

R>

R>

R (A<)

L (R>)

R>

(3.19)

Even a single effect may in principle escape the scope of a closure operator,
with the help of 𝜂. For demonstrative purposes, imagine the closure operator of
(3.19) is obligatory, or perhaps even part of the semantics of the conditional.2
Then the only way to combine a conditional with an ordinary, effect-free

2Conditionals are indeed occasionally thought to associate with static alternatives of the S
variety (Alonso-Ovalle, 2009), as in (3.20), and almost always thought to associate with dynamic
alternatives of the D variety (e.g., Muskens 1996), as in (3.21).

if :: St� St� t
JifK B λ𝑚λ𝑛.

∧{𝑝 ⇒ ∨
𝑛 | 𝑝 ∈ 𝑚}

(3.20)

if :: Dt� Dt� Dt
JifK B λ𝑚λ𝑛λ𝑖. {〈∀ 𝑗 . 〈T, 𝑗〉 ∈ 𝑚𝑖 ⇒ ∃𝑘. 〈T, 𝑘〉 ∈ 𝑛 𝑗, 𝑖〉}

(3.21)
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antecedent would be to coerce the antecedent into a trivially indeterminate
computation, one whose only thread is the ordinary proposition.

t� t
if (smile j)

t� t� t
if

t

smile j

St� t
∃-clo

St

{smile j}

α� Sα
𝜂

t

John smiled

>

>

>

(3.22)

If the antecedent has an effect, but not an effect that ∃-clo knows what to
do with, then the 𝜂-coercion must apply to the underlying, pure value of the
antecedent.

G (t� t)
λ𝑔. if (smile𝑔0)

t� t� t
if

Gt

λ𝑔. smile𝑔0

St� t
∃-clo

G (St)
λ𝑔. {smile𝑔0}

α� Sα
𝜂

Gt

λ𝑔. smile𝑔0

she0 smiled

R>

R>

R>

(3.23)
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This same strategy, of applying pure to the result of a computation — corre-
sponding to its underlying type — might just as well be used to coerce the
propositions underlying an S-node, as in (3.24). In so doing, the existential force
of the indefinite, carried by the alternatives it generates, escapes the closure
operator and outscopes the conditional in which it appears.

S (t� t)
{if (smile𝑥) | person𝑥}

t� t� t
if

St

{smile𝑥 | person𝑥}

St� t
∃-clo

S (St)
{{smile𝑥} | person𝑥}

α� Sα
𝜂

St

{smile𝑥 | person𝑥}

someone smiled

R>

R>

R>

(3.24)

In this manner, cleverly allocated 𝜂 operators can play two apparently contrary
roles in the grammar. They can inject pure values into computations that feed
closure operators, creating the effect structure that the operators need. But
in exactly the same way, they can render the underlying values of already-
effectful denotations as dummy computations, providing decoy targets for
closure operators, and in the process shield effects from the operators that
threaten to consume them.

However, as in other places in this Element, we should like very much to
eliminate cleverness from the picture. Once a theorist has fixed a grammar and
a set of lexical items, it should not require an act of inspiration to figure out the
range of meanings an expression may take. This led to the reframing of (•) and
(~) in terms of R/L and A above.

It is less obvious how to recast occurrences of 𝜂 in these terms because 𝜂
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creates an effect, where (•) and (~) eliminate them. We suggest that in the
presence of R/L, the only use for 𝜂 is in exactly the scenarios spelled out above:
to feed a closure operator of some sort or another. We thus propose the rules in
(3.25).

Ú :: ((σ� σ′) � τ� ω) � (Θσ� σ′) � τ� ω
Ú (∗) 𝐸1 𝐸2 B (λ𝑎. 𝐸1 (𝜂 𝑎)) ∗ 𝐸2

(3.25a)

Ù :: (τ� (σ� σ′) � ω) � τ� (Θσ� σ′) � ω
Ù (∗) 𝐸1 𝐸2 B 𝐸1 ∗ (λ𝑏. 𝐸2 (𝜂 𝑏))

(3.25b)

These rules say that a closure operator of type Θσ � σ′ (on the left or the
right) may be combined with a prejacent of type τ whenever the function type
σ � σ′ could be combined with τ. Here’s how: convert the closure operator
into an ordinary function of type σ� σ′ by composing it with 𝜂. That is, create
the function that will take in an input of type σ, inject it into Θ with 𝜂, and
then pass that newly created computation of type Θσ into the closer operator.
Then combine this function of type σ� σ′ with the other daughter of type τ in
whatever way(s) make sense.

Derivations of (3.22) and (3.24) using this new unit meta-combinator are
shown in (3.26).

t� t
if (smile j)

t� t� t
if

t

smile j

St� t
∃-clo

t

smile j

John smiled

S (t� t)
{if (smile𝑥) | person𝑥}

t� t� t
if

St

{smile𝑥 | person𝑥}

St� t
∃-clo

St

{smile𝑥 | person𝑥}

someone smiled

>

Ú>

R>

R (Ú>)

(3.26)

The complete applicative and functor rules are summarized in Figure 7.
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Types:

τF e | t | . . . Primitive types
| τ� τ Function types
| . . . . . .
| Στ Computation types

Effects:

ΣF G Reading
| W Writing
| S Indeterminacy
| . . . . . .

Basic Combinators:

(>) :: (α� β) � α� β Forward Application
𝑓 > 𝑥 B 𝑓 𝑥

(<) :: α� (α� β) � β Backward Application
𝑥 < 𝑓 B 𝑓 𝑥

...

Meta-combinators:

L :: (σ� τ� ω) � Θσ� τ� Θω Map Left
L (∗) 𝐸1 𝐸2 B (λ𝑎. 𝑎 ∗ 𝐸2) • 𝐸1

R :: (σ� τ� ω) � σ� Θτ� Θω Map Right
R (∗) 𝐸1 𝐸2 B (λ𝑏. 𝐸1 ∗ 𝑏) • 𝐸2

A :: (σ� τ� ω) � Θσ� Θτ� Θω Structured App
A (∗) 𝐸1 𝐸2 B (λ𝑎λ𝑏. 𝑎 ∗ 𝑏) • 𝐸1 ~ 𝐸2

Ú :: ((σ� σ′) � τ� ω) � (Θσ� σ′) � τ� ω Unit Right
Ú (∗) 𝐸1 𝐸2 B (λ𝑎. 𝐸1 (𝜂 𝑎)) ∗ 𝐸2

Ù :: (σ� (τ� τ′) � ω) � σ� (Θτ� τ′) � ω Unit Left
Ù (∗) 𝐸1 𝐸2 B 𝐸1 ∗ (λ𝑏. 𝐸2 (𝜂 𝑏))

Figure 7 A type-driven grammar with functors and applicatives
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3.4 Applicative typology
The grammar of Figure 7 is in some sense maximally expressive relative

the applicative structure of an effect. It permits every possible agglomeration
or stratification of structure, which in turn means that closure operators may
capture anywhere from none to all of the effects in their prejacents.

It is perhaps worth taking stock of how the different ingredients of Figure 7
regulate this expressivity. One way to carry out this thought experiment is to
investigate the capturing profile of closure operators under various ablations of
the meta-combinators.

For instance, with a purely functorial grammar that includes only (•), we
predict that any operator  :: Θσ� τ will necessarily associate with exactly one
effect. The reason is that while (•) suffices to generate higher-order effects, the
operator  only knows how to process a single layer. All the others will have to
be mapped over it. And if there aren’t any effects, then  is out of luck because
with only (•), there is no way to create a computation where one did not exist
before.

A grammar with only (~) and no mapping or unit combinators is essentially
the Heim and Kratzer and Hamblin grammars of Figures 5 and 6. For starters,
in order for composition to be possible at all, all lexical items will need to be
coerced into the computation type Θ in the lexicon. That done, the grammar
will predict that all closure operators  necessarily associate with at least one
effect, and also necessarily capture all of their prejacent’s effects. Without (•),
there is no way to scope an effect over  , and without 𝜂, there is no way to fake
an effect where one is not expressed.

Excluding only 𝜂 yields a grammar where all closure operators associate
with at least one effect, but do so selectively ((•) allows all but one effect to
optionally pass over the closure). On the flipside, excluding only (~) means all
closure operators associate with at most one effect (𝜂 can create computations at
will, simulating effects where none are expressed, but no (~) means that each
effect creates a distinct computational layer, of which  can target just one).
Finally, excluding only (•) does not reduce the expressivity of the full grammar
in Figure 7, provided that free insertions of 𝜂 are permitted. This is thanks to
the equivalence in (3.6), which ensures the mapping operations can always be
simulated by a composition of 𝜂 and (~).

All this to say, just because a type constructor is mathematically applicative
doesn’t mean that the particular instance(s) of its associated (~) and 𝜂 combina-
tors need be included in a grammar or fragment. It is highly likely that different
natural language operators evince different empirical capturing properties, so it
is useful to know what happens when these algebraic knobs are twiddled.



Effect-driven interpretation 51

3.5 Commutative and non-commutative effects

In this chapter we’ve concentrated on G and S effects as canonical examples
of applicativity in linguistics. These two effects have in common that they are
commutative: when using A to combine 𝐸1 :: Θ (σ� τ) and 𝐸2 :: Θσ, it doesn’t
matter which daughter is on the left and which is on the right. That is, for any
𝐸1 and 𝐸2 with these types, we have the following equivalence.

(3.27) A (>) 𝐸1 𝐸2 = A (<) 𝐸2 𝐸1

This is because the (~) instance for G simply passes an incoming environment
in to both computations 𝐸1 and 𝐸2 before applying the one to the other. And the
(~) instance for S takes the full cross-product of its daughters, selecting every
element from the one and every element from the other independently.

But not all effects are like this. As a segue into the next section, we draw
attention to two such non-commutative effects. The first, T, is defined in (3.28).

TαF s� (α × s)(3.28)
𝜂𝑥 B λ𝑖. 〈𝑥, 𝑖〉

𝐹 ~ 𝑋 B λ𝑖. 〈 𝑓 𝑥, 𝑘〉, where 〈 𝑓 , 𝑗〉 = 𝐹 𝑖

〈𝑥, 𝑘〉 = 𝑋 𝑗

The constructor T models a transition from one context s to another, computing
an α along the way. This is a simplified version of the sort of state-updating
denotations often seen in dynamic semantics. For instance, if we identify
the context type s with a list of mentioned entities (Eijck, 2001; Vermeulen,
1993), then we might imagine that the denotations of names add referents to the
outgoing context, while the denotations of pronouns read antecedents from the
incoming context. Sequencing an expression containing a name and a pronoun,
in that order, should result in a kind of dynamic binding.

Tt

Te

Te

Jupiter’s
e� e
moon

T (e� t)

e� e� t
obscured

Te

Te

its
e� e
spot

A<

L< R>

L<

(3.29)
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Importantly, reversing the order of the daughters would reverse which com-
putation passes its output in to the other. Compare A (>) 𝐸1 𝐸2 and A (<) 𝐸2 𝐸1
below:

A (>) 𝐸1 𝐸2 B λ𝑖. 〈 𝑓 𝑥, 𝑘〉, where 〈 𝑓 , 𝑗〉 = 𝐸1 𝑖

〈𝑥, 𝑘〉 = 𝐸2 𝑗

(3.30a)

A (<) 𝐸2 𝐸1 B λ𝑖. 〈 𝑓 𝑥, 𝑘〉, where 〈𝑥, 𝑗〉 = 𝐸2 𝑖

〈 𝑓 , 𝑘〉 = 𝐸1 𝑗

(3.30b)

In the first case, 𝐸1 is evaluated at the input state 𝑖, and its output 𝑗 is passed in
as input to 𝐸2. In the second case, 𝐸2 is evaluated at the input 𝑖, and its output 𝑗
is passed in as input to 𝐸1. The only way for 𝐸1 to influence the state that 𝐸2 is
evaluated against is for it to come first.

The second non-commutative effect, defined by C in (3.31), models General-
ized Quantifiers over the domain of α.

CαF (α� t) � t(3.31)
𝜂𝑥 B λ𝑐. 𝑐 𝑥

𝐹 ~ 𝑋 B λ𝑐. 𝐹 (λ 𝑓 . 𝑋 (λ𝑥. 𝑐 ( 𝑓 𝑥)))

Here, “applying” one quantifier 𝐹 :: C (σ� τ) to another 𝑋 :: Cσmeans passing
the latter in as the part of the scope of the former. Reversing the order of
evaluation amounts to inverting their scopes, as seen in (3.32) and therefore
(often) the resulting denotation.

A (>) 𝐸1 𝐸2 B λ𝑐. 𝐸1 (λ 𝑓 . 𝐸2 (λ𝑥. 𝑐 ( 𝑓 𝑥)))(3.32a)
A (<) 𝐸2 𝐸1 B λ𝑐. 𝐸2 (λ𝑥. 𝐸1 (λ 𝑓 . 𝑐 ( 𝑓 𝑥)))(3.32b)

3.6 Implementing applicative effects in the type-driven interpreter

Adding applicativity to our interpreter will follow exactly the same format
as adding functoriality did in Chapter 2. We start again by adding modes the
structure-preserving application A and unit rules Ú/Ù. Again because these are
meta-combinators, they are parameterized to the modes that would combine the
relevant underlying types.



Effect-driven interpretation 53

data Mode
= FA | BA | PM -- etc
| MR Mode | ML Mode -- map right and map left
| AP Mode -- structured application
| UR Mode | UL Mode -- unit right and unit left

For the type logic, we need a new predicate to characterize which effects
have applicative instances. The only case to watch out for is that of W , which is
parameterized by the type of data that it stores in its second dimension. In order
to combine two W computations that both have stored, secondary data, we have
to make sure that the supplemental values can be, in some sense, merged. This
is checked with the predicate monoid . For this simple, illustrative system, the
only type that is monoidal is T , where merger is understood to be conjunction.
All of the other functorial effects presented in this Element are also applicative,
so the elsewhere clause of this function is extensionally equivalent to functor .

functor, applicative :: EffX -> Bool
functor _ = True
applicative (WX s) = monoid s
applicative f = functor f && True

monoid :: Ty -> Bool
monoid T = True
monoid _ = False

Extending the combination function combine follows the same recursive
logic as in Chapter 2. When combining a left and right daughter, we start
by including any of the earlier basic and functorial operations, and then we
look to add applicative ones if possible. For instance, if both daughters are
computation types Comp f s and Comp g t with the same applicative effect
( f == g, applicative f ), then try combining the underlying types s and t .
For every way (op, u) that those underlying types can be combined, build a
new composite mode of combination AP op with combined type Comp f u .
The unit rules are similar, trying to combine underlying types, and building on
the results.

combine :: Ty -> Ty -> [(Mode, Ty)]
combine l r =
-- see if any basic modes of combination work
modes l r



54 Elements in Semantics

-- if the right daughter is functorial, try to map over it
++ addMR l r
-- if the left daughter is functorial, try to map over it
++ addML l r
-- if both daughters are applicative, try structured application
++ addAP l r
-- if the left daughter closes an applicative effect,
-- try to purify the right daughter
++ addUR l r
-- if the right daughter closes an applicative effect,
-- try to purify the left daughter
++ addUL l r

addAP l r = case (l, r) of
(Comp f s, Comp g t) | f == g, applicative f

-> [ (AP op, Comp f u) | (op, u) <- combine s t ]
_ -> [ ]

addUR l r = case l of
Comp f s :-> s' | applicative f
-> [ (UR op, u) | (op, u) <- combine (s :-> s') r ]

_ -> [ ]

addUL l r = case r of
Comp f t :-> t' | applicative f
-> [ (UL op, u) | (op, u) <- combine l (t :-> t') ]

_ -> [ ]
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4 Monads

4.1 Effects inside effects
Up to this point we have ignored the internal compositional details of various

noun phrases, writing things like:

Expression Type Denotation

the cat Me 𝑥 if cat = {𝑥} else #
a cat Se {𝑥 | cat𝑥}
every cat Ce λ𝑐. ¬∃𝑥. cat𝑥 ∧ 𝑐 𝑥

. . . . . . . . .

Consider then the semantics of a determiner. Each one creates a specific sort
of computation, the particulars of which depend on the property that restricts it.
Take the indefinite article ‘a’ for example. It creates an indeterminate computa-
tion by sifting each of its restrictor’s witnesses into an isolated compositional
thread. Or the definite article ‘the’, which introduces partiality by creating a
computation that might crash, depending on the property it is handed. And so
on for the others.

The natural denotations for these sorts of operations are functions from
properties to computations.

Expression Type Denotation

the (e� t) � Me λ𝑃. 𝑥 if 𝑃 = {𝑥} else #
a (e� t) � Se {𝑥 | cat𝑥}
every (e� t) � Ce λ𝑃λ𝑐. ¬∃𝑥. 𝑃𝑥 ∧ 𝑐 𝑥

. . . (e� t) � Θe . . .

Types like these are the converses of the closure operators in the previous section.
Where a closure operator  :: Θt � t reduces an effect Θt to a value t, a
determiner generates an effect Θe from a value (e� t). In Category Theoretic
settings, types with this general shape — σ�Θτ— are known as Kleisli arrows,
and types with the shape of closure operators — Θσ� τ— known as co-Kleisli
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arrows. Simple examples of composition with these types are given in (4.1)

Se

(e� t) � Se
a

e� t

e� t
linguist

e� t

e� e� t
from

e

UCLA

Ce

(e� t) � Ce
every

e� t

e� t
linguist

e� t

e� e� t
from

e

UCLA

>

u

>

>

u

>

(4.1)

What happens when the restrictor itself denotes a computation, as in (4.2)?
Nothing particularly special. The modes of combination at the nodes of the
noun phrase must be mapped over the new effect, but are otherwise unchanged.

G (Se)

(e� t) � Se
a

G (e� t)

e� t
linguist

G (e� t)

e� e� t
from

Ge

her department

R>

Ru

R>

(4.2)

Of note, however, is that the phrase is not ambiguous. Only one layering of the
two effects is possible. The restrictor’s effect must take wider scope. There is
simply no other way to combine the pieces.

This is true even when the computation in the restrictor is of the same ilk as
that generated by the determiner.
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S (Se)

(e� t) � Se
a

S (e� t)

e� t
linguist

S (e� t)

e� e� t
from

Se

a state school

R>

Ru

R>

(4.3)

The determiner needs to get at the value(s) computed by the restrictor, the
witnesses of that underlying ordinary property type (e� t). With the algebraic
ingredients developed thus far, the way to do that — the only way to do that —
is to map over the effects of the restrictor’s computation, as in (4.3). This means
that the resulting denotation is necessarily higher-order, even though the S effect
is applicative.

Compare the derivations in (4.4a) and (4.4b). The un-nested configuration
in (4.4a) has a now familiar applicative combination, merging the cat and
box alternatives into one set of propositions. But the nested configuration in
(4.4b) has no such combination. We are necessarily left with a set of sets of
propositions. For each box, we compute the set containing one proposition per
cat.

St

Se

a cat

S (e� t)

e� t
sat

S (e� t)

e� e� t
in

Se

a box

A<

Ru

R>

(4.4a)
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S (St)

S (Se)

(e� t) � Se
a

S (e� t)

e� t
cat

S (e� t)

e� e� t
in

Se

a box

e� t
sat

R (R<)

R>

Ru

R>

(4.4b)

This predicts that an otherwise unselective closure operator will necessarily
fail to capture effects that happen to be nested in the arguments of Kleisli arrows.
For instance, assuming as in Chapter 3 that the antecedent of a conditional
is associated with an existential closure operator, the current state of affairs
predicts that a nested indefinite will necessarily take exceptional scope over the
conditional.

St

S (t� t)

t� t� t
if

St

St� t
∃-clo

S (St)

e

Mary
S (S (e� t))

e� e� t
sees

S (Se)

(e� t) � Se
a

S (e� t)

cat in a box

t

she sends me a picture

L>

R>

R>

R (R<)

R (R>)

R>

(4.5)
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Certainly for English indefinites at least, this prediction is false. The particular
problem might be solved by adding more ∃-clo operators in the antecedent, but
that strategy is less sensible when the closure operator is a lexical item that
associates unselectively with effects. For illustration, consider the entry in (4.6)
defining ‘can’ as an alternative-sensitive modal operator (see, e.g., Goldstein
2019 for discussion of analyses along these lines). Given a set of options
𝑚 determined by S-generators in its prejacent, the modal ensures that every
proposition in 𝑚 is a live possibility.

can :: S (e� t) � e� t
JcanK B λ𝑚λ𝑥.

∧{^ (𝑃𝑥) | 𝑃 ∈ 𝑚}
(4.6)

As things stand, a difference is predicted in the possible readings of (4.7a)
and (4.7b). Only the latter is predicted to confer total freedom to Mary in her
choice of apples and blankets. The former only grants universal permission to
the apples of a particular blanket. This is empirically disappointing, since in
reality it doesn’t matter whether it’s the apples or Mary that’s on the blanket.
Both parses have unselective readings.

t

e

Mary
e� t

S (e� t) � e� t
can

S (e� t)

e� e� t
eat

Se

(e� t) � Se
any

S (e� t)

e� t
apple

S (e� t)

e� e� t
on

Se

any basket

R<

R>

R>

R>

Ru

R>

(4.7a)
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t

e

Mary
e� t

S (e� t) � e� t
can

S (e� t)

S (e� t)

e� e� t
eat

Se

(e� t) � Se
any

e� t
apple

S (e� t)

e� e� t
on

Se

any blanket

R<

R>

Au

R>

>

R>

(4.7b)

The point is not to argue for any particular analysis of English free choice
semantics or indefinite scope delimitation. The point is that if there is any
operator that can associate with nested effects just the same as it can with
un-nested effects, that pattern is beyond the expressive reach of the current
grammar.

And such nestings do not only occur in the arguments of determiners. They
are liable to pop up any time a Kleisli arrow appears. For instance, consider the
abstraction operator commonly used to regulate movement and binding, defined
with an effect-theoretic type in (4.8)

𝜆𝑛 :: Gβ� e� Gβ
J𝜆𝑛K B λ𝑚λ𝑥λ𝑔. 𝑚 𝑔𝑛 ↦→𝑥

(4.8)

Given an environment-dependent meaning 𝑚 :: Gβ, the abstraction 𝜆𝑛 binds an
argument 𝑥 to the 𝑛th coordinate of the environment that 𝑚 is evaluated in. Any
pro-forms that access this coordinate will therefore resolve to 𝑥 when evaluated.

The return type of 𝜆𝑛 is a Kleisli arrow: e� Gβ. What happens when the
specifier of the 𝜆𝑛 is itself environment-dependent, as in (4.9)? For no good
reason, we are forced to end up with a denotation that needs two environments in
order to return a truth value. The first, outer environment will be used to value
the subject, ‘her0 mother’, and the second, inner environment used to value the
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object, ‘her0 father’, even though the pronoun is the same in both cases.

G (Gt)

Ge

her0 mother

e� Gt

Gβ� e� Gβ
𝜆3

Gt

Ge

𝑡3

G (e� t)

e� e� t
called

Ge

her0 father

L<

>

A<

R>

(4.9)

Compare this with what happens when the two pronouns occur in nearly any
other configuration. With ‘her0 mother’ just a little bit higher or lower, the
environment-sensitivities of the two anaphoric expressions can be merged as
usual.

Gt

Ge

her0 mother

e� t

t� e� t
said

Gt

e

John
e� Gt

Gβ� e� Gβ
𝜆3

Gt

𝑡3 called her0 father

L<

>

<

>

(4.10)
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Gt

e

John
e� Gt

Gβ� e� Gβ
𝜆3

Gt

Ge

𝑡3

G (e� t)

G (e� t)

called her0 father

G (e� t)

with her0 mother

<

>

A<

Au

(4.11)

What is needed then is a way to combine a Kleisli arrow 𝑘 :: σ� Θτ with
a computation 𝑚 :: Θσ so as to produce a composite computation Θτ that
amalgamates the effects of 𝑚 and 𝑘 . It is not hard to see that such combinations
are easy to define when Θ is G or S, which immediately irons out the wrinkles in
the examples above. And it turns out that analogous combinations are in fact
definable for all of the computation types in Table 2. Moreover, the various
combinators share important algebraic relationships with (•), 𝜂, and (~), which
we describe in the next section.

4.2 Flattening effects
Let’s start with G. The task is to find a way of putting something of type

𝑘 :: σ� Gτ together with something of type 𝑚 :: Gσ. The obvious candidate —
indeed the only polymorphic function with this type — is given in (4.12).

(★G) :: (σ� Gτ) � Gσ� Gτ
𝑘 ★G 𝑚 B λ𝑔. 𝑘 (𝑚𝑔) 𝑔

(4.12)

Notice that this just permutes the arguments of the corresponding (~) operation
on G, which is fitting since (★) and (~) differ only in the type of their first
argument: σ� Gτ vs. G (σ� τ). And the only difference between these types
is whether the environment argument corresponding to G comes before or after
the ordinary argument corresponding to σ.

Let’s try S. We’re now seeking an operation (★S) to combine a function
𝑘 :: σ� Sτ with an argument 𝑚 :: Sσ. After a bit of thought, the following



Effect-driven interpretation 63

emerges as a natural choice.

(★S) :: (σ� Sτ) � Sσ� Sτ
𝑘 ★S 𝑚 B

⋃{𝑘 𝑥 | 𝑥 ∈ 𝑚}
(4.13)

This time there are other functions we could imagine doing the job. The big
union, for instance, could just as well be swapped out for a big intersection, as
far as the types are concerned. But there is an important sense in which the
definition in (4.13) preserves all of the effect structure of 𝑚 and 𝑘 . A grand
intersection would likely throw out alternatives generated by at least one of 𝑚
and 𝑘 , certainly not something we’d want from a mode of combination.

One way to formalize the sense in which (★) does not add or lose any
information about the effects generated by 𝑚 and 𝑘 is to note that for both G and
S, we have the following equivalences.

λ𝑥. 𝑘 ★G (𝜂G 𝑥)
= λ𝑥. 𝑘 ★G (λℎ. 𝑥)
= λ𝑥λ𝑔. 𝑘 ((λℎ. 𝑥) 𝑔) 𝑔
= λ𝑥λ𝑔. 𝑘 𝑥 𝑔

= 𝑘

(4.14a)

𝜂G ★G 𝑚

= (λ𝑥λℎ. 𝑥) ★G 𝑚
= λ𝑔. (λ𝑥λℎ. 𝑥) (𝑚𝑔) 𝑔
= λ𝑔. 𝑚 𝑔

= 𝑚

(4.14b)

λ𝑥. 𝑘 ★S (𝜂S 𝑥)
= λ𝑥. 𝑘 ★S {𝑥}
= λ𝑥. {𝑧 | 𝑎 ∈ {𝑥}, 𝑧 ∈ 𝑘 𝑎}
= λ𝑥. {𝑧 | 𝑧 ∈ 𝑘 𝑥}
= 𝑘

(4.15a)

𝜂S ★S 𝑚

= (λ𝑥. {𝑥}) ★S 𝑚
= {𝑧 | 𝑎 ∈ 𝑚, 𝑧 ∈ (λ𝑥. {𝑥}) 𝑎}
= {𝑎 | 𝑎 ∈ 𝑚}
= 𝑚

(4.15b)

The reductions in (4.14a) and (4.15a) guarantee that no information in 𝑘 is
lost when it is combined via (★); since 𝜂 creates a trivial computation, the only
effects in 𝑘 ★ 𝜂𝑥 should come from 𝑘 . The reductions in (4.14b) and (4.15b)
guarantee that no information is added to 𝑚 when it is combined via (★); again
the reason is that since 𝜂 doesn’t do anything interesting, the only modification
to 𝑚 would have to come from (★).

An applicative functor for which there is such a well-behaved (★) operator is
known as a monad. Formally, to be well-behaved the operator should respect
the laws in (4.16). The first two equations are just generalizations of the facts
observed above. We discuss the significance of Associativity in Section 4.3.
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(4.16) Left Identity: 𝜂 ★𝑚 = 𝑚

Right Identity: 𝑘 ★ 𝜂𝑥 = 𝑘 𝑥

Associativity: 𝑘 ★ (𝑐 ★𝑚) = (λ𝑥. 𝑘 ★ 𝑐 𝑥) ★𝑚

In Haskell, the (★) operation is spelled (=<<) . In practice, it is often
convenient to work with a version of (★) that takes its arguments in the opposite
order:

𝑚 >>= 𝑘 B 𝑘 ★𝑚(4.17)

Indeed, in Haskell, it is this flipped version that the standard Monad type class
implements, where it is given the name (>>=) , pronounced “bind”. Obviously
(=<<) and (>>=) are interdefinable. Also, for historical reasons, the pure

operation guaranteed by the applicativity of the constructor is redundantly
specified in the Monad class, where it is called return .

class Applicative f => Monad f where
(>>=) :: f a -> (a -> f b) -> f b

(=<<) :: (a -> f b) -> f a -> f b
k =<< m = m >>= k

return :: a -> f a
return = pure

One thing to notice about the (★) operations defined in (4.12) and (4.13) is
that they both implicitly incorporate the corresponding definitions of (•) for
their types. This is certainly easiest to see in (4.13), which is clearly a mapping
of 𝑘 over 𝑚 — 𝑘 •S 𝑚 B {𝑘 𝑥 | 𝑥 ∈ 𝑚} — followed by a flattening with

⋃
. We

might just as well have written 𝑘 ★S 𝑚 B
⋃(𝑘 •S 𝑚).

Upon inspection, (4.12) can also be seen as a mapping of 𝑘 over 𝑚 —
𝑘 •G 𝑚 B λ𝑔. 𝑘 (𝑚𝑔) — followed by a sort of flattening, the re-use of the
argument 𝑔. The traditional name for this argument-duplicating operation is
W B λ𝑀λ𝑔. 𝑀 𝑔𝑔. Using this, we might just as well have written (4.12) as
𝑘 ★G 𝑚 B W (𝑘 •G 𝑚).

And in general, every monadic (★) :: (α� Θβ) � Θα� Θβ is a composition
of an effect-mapping operation (•) :: (α�β)�Θα�Θβ and an effect-flattening
operation 𝜇 :: Θ (Θβ) � Θβ. That is, for every monad Θ, there is a 𝜇 such that:

𝑘 ★𝑚 = 𝜇 (𝑘 • 𝑚)(4.18)
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It therefore suffices to define the relevant 𝜇 :: Θ (Θβ) � Θβ that would make the
derived (★) law-preserving.

Haskell’s customary name for 𝜇 is join . For quite obscure technical and
historical reasons, join is left out of the standard Monad type class, but in
principle it could have been defined as follows.

class Applicative f => Monad f where
join :: f (f a) -> f a

return :: a -> f a
return = pure

m >>= k = join (fmap k m)
k =<< m = m >>= k

Finally, we should point that only functors f which are applicative can
be monads, as implied by the class hierarchy Applicative f => Monad f . In
other words, every monad is an applicative functor, and therefore a functor. In
fact, the applicative and functorial combinators for a type can be derived from
(>>=) and 𝜂 by the recipes in (4.19a) and (4.19b).

𝑘 • 𝑚 = 𝑚 >>= λ𝑥. 𝜂 (𝑘 𝑥)(4.19a)

𝐹 ~ 𝑋 = 𝐹 >>= λ 𝑓 . 𝑋 >>= λ𝑥. 𝜂 ( 𝑓 𝑥)(4.19b)

Or in Haskell:

fmap k m = m >>= \x -> return (k x)
mf <*> mx = mf >>= \f -> mx >>= \x -> return (f x)

As in Chapter 3, it turns out that all of the constructors in Table 2 are monadic.
We provide standard definitions of the monad instances for these effects in
Appendix A4. Incorporating (★) into grammar fragments presents the same
options as in the preceding sections, described below.

4.2.1 Flattening in the grammar

Of course, since the nodes that caused compositional trouble in (4.4b)/(4.9)
have exactly the types that (★) and (>>=) are suited to combine, those immediate
problems would be resolved just by adding these two operators to the inventory
of combinatory modes.
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This would provide for derivations as in (4.20) and (4.21).

St

Se

(e� t) � Se
a

S (e� t)

e� t
cat

S (e� t)

e� e� t
in

Se

a box

e� t
sat

L<

★

Ru

R>

(4.20)

Gt

Ge

her0 mother

e� Gt

Gβ� e� Gβ
𝜆3

Gt

Ge

𝑡3

G (e� t)

e� e� t
called

Ge

her0 father

>>=

>

A<

R>

(4.21)

But since the grammar we have developed so far already has robust resources
for mapping left or right with forward or backward application, we might as well
make use of the equivalence in (4.18). This way we add only one meta-rule for
exploiting the monadic nature of effects, defined in (4.22). When the parameter
(∗) to this rule is R>, the result is equivalent to (★), and when the parameter is
L<, the result is equivalent to (>>=).

J (∗) 𝐸1 𝐸2 B 𝜇 (𝐸1 ∗ 𝐸2)(4.22)
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Thus we would derive (4.20), for instance, as in (4.23) instead.

St

Se

(e� t) � Se
a

S (e� t)

e� t
cat

S (e� t)

e� e� t
in

Se

a box

e� t
sat

L<

J (R>)

Ru

R>

(4.23)

And being a mode of combination, the J rule may itself appear as part of
a parameter to other meta-combinators like R, L, and A. This guarantees that
incidental occurrences of other kinds of effects can continue to bubble up even
as monadic effects are ironed out below them. The derivation in (4.24) provides
an example.

G (St)

G (Se)

(e� t) � Se
a

G (S (e� t))

G (e� t)

e� e� t
picture

Ge

of her

S (e� t)

e� e� t
in

Se

a box

e� t
faded

L (L<)

R (J (R>))

L (Ru)

R> R>

(4.24)

The entire grammar, extended with J, is presented in Figure 8.
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Types:

τF e | t | . . . Primitive types
| τ� τ Function types
| . . . . . .
| Στ Computation types

Effects:

ΣF G Reading
| S Indeterminacy
| . . . . . .

Basic Combinators:

(>) :: (α� β) � α� β Forward Application
𝑓 > 𝑥 B 𝑓 𝑥

(<) :: α� (α� β) � β Backward Application
𝑥 < 𝑓 B 𝑓 𝑥

. . .

Meta-combinators:

L :: (σ� τ� ω) � Θσ� τ� Θω Map Left
L (∗) 𝐸1 𝐸2 B (λ𝑎. 𝑎 ∗ 𝐸2) • 𝐸1

R :: (σ� τ� ω) � σ� Θτ� Θω Map Right
R (∗) 𝐸1 𝐸2 B (λ𝑏. 𝐸1 ∗ 𝑏) • 𝐸2

A :: (σ� τ� ω) � Θσ� Θτ� Θω Structured App
A (∗) 𝐸1 𝐸2 B (λ𝑎λ𝑏. 𝑎 ∗ 𝑏) • 𝐸1 ~ 𝐸2

Ú :: ((σ� σ′) � τ� ω) � (Θσ� σ′) � τ� ω Unit Right
Ú (∗) 𝐸1 𝐸2 B (λ𝑎. 𝐸1 (𝜂 𝑎)) ∗ 𝐸2

Ù :: (σ� (τ� τ′) � ω) � σ� (Θτ� τ′) � ω Unit Left
Ù (∗) 𝐸1 𝐸2 B 𝐸1 ∗ (λ𝑏. 𝐸2 (𝜂 𝑏))

J :: (σ� τ� Θ (Θω)) � σ� τ� Θω Join
J (∗) 𝐸1 𝐸2 B 𝜇 (𝐸1 ∗ 𝐸2)

Figure 8 A type-driven grammar with monads
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4.3 Scope and★-ing
4.3.1 LFs and abstraction

Monads have played an important role in attempts to provide denotational
semantics for imperative programming languages. These are languages that
include commands for the sorts of actions described in Chapter 1: (re-)assigning
values to variables, throwing errors, starting loops, etc. Such commands are
described as denotating computations in exactly the way that the expressions in
Table 2 have been here. And sequences of two such commands, one of which
depends on the value computed by the other, are given meanings in terms of
(★).

Functional programming languages, unlike imperative languages, and
unlike natural languages, make these denotational mechanisms explicit in the
syntax of expressions. In effect, everything that is packed into the modes of
combination in Figure 8, and often left implicit in an imperative language, must
be typed out as part of the program itself in a functional language like Haskell.
This means there are a lot of explicit >>= s and fmap s gluing everything
together. In fact, >>= has played such an outsized role in structuring Haskell
programs that it has its own syntax called do -notation.

do -blocks represent sequences of monadic actions, chained together by
>>= . They are intended to resemble an imperatively structured program design

while maintaining referential transparency. For instance:

s = do x <- m
y <- o x
return (p y)

1. Compute m to get a value x

2. Pass x to o to compute a value y

3. Pass y to p and box up the result

This block is mechanically “de-sugared” by the compiler into a right-nested
sequence of bind s:

s = m >>= (\x -> o x >>= (\y -> return (p y)))

Essentially, each v <- m
... is translated as m >>= (\v -> ...) . This means

that in a do -block:

• Every expression to the right of <- has to have type Θα, for some monad Θ
• And they all have to be the same monad Θ
• The last line has to be an expression of type Θς for some type ς
• The whole block will then have type Θς
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Like everything in Haskell, do -blocks are just expressions. They can be
used anywhere that any other expression of the same type might be used. In
particular, since every do -block defines a computation of type Θς for some
monad Θ, they may themselves occur on the right side of a <- in a larger
do -block. For instance, taking advantage of the equivalences in (4.19a), we

might write the Composition Law for functors — 𝑓 • (𝑔 •𝑀) = ( 𝑓 ◦ 𝑔) •𝑀 —
as an equivalence between programs, as in (4.25).

(4.25)
do y <- do x <- m

return (g x)
return (f y)

=
do x <- m

return (f (g x))

Now take a look at the derivation in (4.4), starting with the most embedded
constituent.

S (e� t)

e� e� t
in

Se

a box

R>

(4.26) (4.27) do x <- a box
return (in' x)

Following the definition of R, this constituent is computed by the program
fmap in' (a box) . Given the equivalence in (4.19a), this could just as well be

expressed as a box >>= \x -> return (in' x) . Written in do -notation, this
is the program in (4.27).

Repeating this translation at the next constituent up delivers the program in
(4.29), where (&) is (u). And given the functor law spelled out in (4.25), this
is equivalent to (4.30).

S (e� t)

e� t
sat

S (e� t)

in a box

(4.28)
(4.29)

do p <- do x <- a box
return (in' x)

return (sat & p)

(4.30) do x <- a box
return (sat & in' x)

Finally, using the monadic encoding of (~) in (4.19b), the top level constituent
is computed by the program in (4.32), which, again given the functor law in
(4.25), is equivalent to (4.33).
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St

Se

a cat
S (e� t)

sat in a box

A<

(4.31)
(4.32)

do z <- a cat
p <- do x <- a box

return (sat & in' x)
return (p z)

(4.33)
do z <- a cat

x <- a box
return ((sat & in' x) z)

De-sugaring the do -notation into >>= s, and translating this program back
into a tree yields the derivation in (4.34).

St

Se

a cat
e� St

𝜆𝑧 St

Se

a box
e� St

𝜆𝑥 St

t

e

𝑧

e� t

e� t
sat

e� t

e� e� t
in

e

𝑥

𝜂

>>=

>>=

<

u

>

(4.34)

Linguists may be struck by how much this looks like Quantifier Raising.
All of the properly computational expressions are raised from their argument
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positions. Those positions are instead filled with variables that are abstracted
over where the extra-ordinary constituent lands, forming a kind of “scope” for
the computation. But these computations are not quantificational; they do not
take scopes as arguments. Instead, the enriched content and its contination are
combined via (★).

In this sense, Haskell’s do -notation is very much like the linguist’s LF.
Content that cannot be interpreted in situ via the basic modes of combination
is moved out of the way, leaving a named trace as a placeholder. All of the
ordinary “business logic” of the derivation is performed with this variable. At
the top, the results of this ordinary calculation are folded over the computational
structure of the rich expression.

Importantly, the monad laws guarantee that this transformational derivation
and the original, in situ derivation in (4.4) are equivalent. And indeed such
equivalences will hold for any monadic effect, not just S. Also importantly, the
ex situ and in situ equivalence extends to cases of exceptional scope. Repeating
the process in (4.26)–(4.34), it’s easy to see that the derivation in (4.35) is
algebraically equivalent to the island-violating derivation in (4.36).

St

{when (call𝑥 j) (worrym) | 𝑥 ∈ ling}

e

Mary
S (e� t)

S (e� t)
worries

S ((e� t) � e� t)

S (t� (e� t) � e� t)
when

St

Se

John
S (e� t)

S (e� e� t)
calls

Se

a well-known linguist

R<

R<

R>

R<

R>

(4.35)
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St

{when (call𝑥 j) (worrym) | 𝑥 ∈ ling}

Se

a well-known linguist

e� St

𝜆𝑥 St

t

e

Mary
e� t

e� t
worries

(e� t) � e� t

t� (e� t) � e� t
when

t

e

John
e� t

e� e� t
calls

e

𝑥

𝜂

>>=

<

<

>

<

>

(4.36)

In fact, the exceptional scope of monadic effects can be seen directly in
the Associativity Law of (4.16). This law is repeated in three different
syntactic formats in (4.37). Imagine the constituent denoting 𝑛 is an island.
The derivations on the right-hand sides of (4.37) are island-violating. The 𝑚

constituent is raised out of the 𝑛-island to scope over a larger chunk of the
sentence, including 𝑜. But when Θ is a monad, these derivations are equivalent
to those on the left-hand sides, which are island-respecting. The effectful
constituent 𝑚 takes scope over its enclosing island 𝑛, but nothing else. It is
raised to the specifier of 𝑛, if you like. From there, the entire island is pied-piped
to scope over the remainder of expression 𝑜. But the resulting meaning will be
exactly as if 𝑚 had moved alone.

(𝑚 >>= λ𝑥. 𝑛𝑥) >>= λ𝑦. 𝑜 𝑦 = 𝑚 >>= (λ𝑥. 𝑛𝑥 >>= λ𝑦. 𝑜 𝑦)(4.37a)
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Θς

Θβ

Θα

𝑚

α� Θβ

𝜆𝑥 Θβ

𝑛

· · · α · · ·
𝑥

β� Θς

𝜆𝑦 Θς

𝑜

· · · β · · ·
𝑦

=

Θς

Θα

𝑚

α� Θς

𝜆𝑥 Θς

Θβ

𝑛

· · · α · · ·
𝑥

β� Θς

𝜆𝑦 Θς

𝑜

· · · β · · ·
𝑦

>>=

>>=

>>=

>>=

(4.37b)

do y <- do x <- m
n x

o y

=
do x <- m

y <- m x
o y

(4.37c)

4.3.2 Transformation into continuations

To recap the previous section, every monadic computation can be expressed
in a do -block, structured as a sequence of right-nested actions, concluding with
the calculation of an ordinary value. The resemblance to Quantifier Raising and
traditional linguistic LFs is uncanny. It is natural then to wonder what monads
have to do with Generalized Quantifiers. Following this thread exposes yet a
third effect-driven derivational strategy.

To bring out the connection, let us treat (>>=) as a “type-shifting” unary
operator, like 𝜂. In this form, it shifts an expression of type Θα to one of type
(α� Θβ) � Θβ, as in (4.38).

St

{spoke𝑥 | ling𝑥}

(e� St) � St
λ𝑘.

⋃{𝑘 𝑥 | ling𝑥}

Se

{𝑥 | ling𝑥}
a linguist

e� St
λ𝑥. {spoke𝑥}

e� t
λ𝑥. spoke𝑥

spoke

>>= . . .

(4.38) t

spokem

(e� t) � t
λ𝑘. 𝑘m

e

m

Mary

e� t
λ𝑥. spoke𝑥

spokeLIFT

(4.39)
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In this guise, (>>=) plays a role very much like the traditional lift operator
of Partee (1986). Where lift converts an ordinary value of type e into a
Generalized Quantifier over properties of individuals, (>>=) converts an enriched
value of type Θe into an enriched quantifier over properties that may have side
effects.

In fact, the first monad law ensures that when a computation is trivial (just a
value injected into some structure), then (>>=) is exactly equivalent to lift.

Left Identity: 𝜂𝑥 >>= 𝑘 = 𝑘 𝑥(4.40)

This is seen by simply rewriting the law in (4.40) using the unary version of
(>>=).

Left Identity: (𝜂𝑥)>>= = λ𝑘. 𝑘 𝑥

= lift𝑥
(4.41)

In tree form, this says the following two derivations must be equivalent:

(α� Θβ) � Θβ
λ𝑘. 𝜂 𝑥 >>= 𝑘

Θα

𝜂𝑥

α

𝑥

>>=

𝜂

(4.42) (α� Θβ) � Θβ
λ𝑘. 𝑘 𝑥

α

𝑥

LIFT

(4.43)

And here’s where things get interesting. As characterized in Chapter 2,
Generalized Quantifiers themselves constitute a kind of computation. Any
expression of type (α� t) � t can appear locally in a position where an
ordinary α is expected. But of course the quantifier does not merely contribute
a value to that position. Rather, it tests what happens when the rest of the
derivation — its continuation — is run with different values of type α, and then
makes a summary decision based on the results of these experiments. Here are
the functorial and applicative instances for such continuized computations.

𝑘 • 𝑚 B λ𝑐. 𝑚 (λ𝑥. 𝑐 (𝑘 𝑥))(4.44a)

𝐹 ~ 𝑋 B λ𝑐. 𝐹 (λ 𝑓 . 𝑋 (λ𝑥. 𝑐 ( 𝑓 𝑥)))(4.44b)
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From an algebraic perspective, there is nothing special about computations
that expect their derivational contexts to compute truth values, per se; in other
words, nothing special about the type t. Much more generally, any function of
type (α� ο) � ρ can be construed as a computation that runs by swallowing
some ο-sized chunk of its context. With this context it tries out different α
values to see what ο results they lead to. With the collection of these results in
hand, it makes a decision on which ρ to return. When ο and ρ are t, it (often)
makes sense to think of these computations as “quantifications”, in that the
boolean that is returned may depend only on how many type-α values tipped
the text toward truth. When ο and ρ are other types, they may not do anything
that we would associate with with quantities, but they are still functions of their
contexts.

To the point, any higher-order function of type (α� Θβ) � Θβ fits this pattern.
Such a function may well be construed as a computation purporting to be an α,
but in reality expecting to see what computations Θβ result from filling in its
local position with various type-α choices. And every unary application of (>>=)
creates a higher-order function of exactly this type.

In light of this, we may choose to conceive of (>>=) not as a mode of
combination, but as a way of transforming one kind of computation into another.
Formally, this amounts to assigning (>>=) the type in (4.45), where C is understood
to be the type of computations that depend on their continuations, in this case
continuations of type (α� Θβ).

(>>=) :: Θα� Cα(4.45)

Polymorphic functions like this, that convert values in one functor to values in
another functor, are known as natural transformations.

Look at what happens when an arbitrary monadic computation 𝑚 :: Θα is
so transformed. The resulting computation 𝑚>>= :: Cα will have functorial and
applicative combinators, induced by those of the C effect defined in (4.44):

𝑘 • 𝑚>>= B λ𝑐. 𝑚>>= (λ𝑥. 𝑐 (𝑘 𝑥))(4.46a)

𝐹>>= ~ 𝑋>>= B λ𝑐. 𝐹>>= (λ 𝑓 . 𝑋>>= (λ𝑥. 𝑐 ( 𝑓 𝑥)))(4.46b)

Strikingly, these induced operations are almost exactly identical to those in
(4.19), which themselves were induced directly from the underlying monad Θ.
The only difference is that where the original definitions in (4.19) “return” the
underlying results with 𝜂, the continuized definitions in (4.46) leave open what
will happen to them next by abstracting over this role with the continuation
variable 𝑐. Naturally, passing 𝜂 in for this function yields the original definitions.
That is, for any monad Θ, we have the equivalences in (4.47). These equations
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are made slightly more telegraphic by writing (·)>>= as (·)↑ and (·) 𝜂 as (·)↓, to
indicate lifting into and lowering out of the C effect space.

𝑘 •Θ 𝑚 = (𝑘 •C 𝑚>>=) 𝜂
= (𝑘 •C 𝑚↑)↓

(4.47a)

𝐹 ~Θ 𝑋 = (𝐹>>= ~C 𝑋>>=) 𝜂
= (𝐹↑ ~C 𝑋↑)↓

(4.47b)

This means that in principle, every single instance of (•) and (~), or the
corresponding R/L and A meta-combinators, can be simulated with instances
(•C) and (~C), provided access to free applications of the (·)↑ and (·)↓ operators
above. In the framework laid out here, eliminating all effect-specific instances
of (•) and (~) is as simple as restricting the R, L, and A rules to apply only
to C-type computations, rather than arbitrary Θ computations. The relevant
components of such a grammar are shown in Figure 9.

Going further, we might even replace the free applications of an expression
𝑚 to 𝜂 (provided by (·)↓) with completely free occurrences of 𝜂 in a derivation.
That is, we might suppose that not only can expressions be freely applied to 𝜂,
but 𝜂 can also freely apply to expressions (as it was in derivations like (4.34),
for instance). Together with (·)↑, this would render the Unit and Join rules
otiose. In fact, with free insertions of 𝜂, the R and L are also unnecessary. For
an at-length presentation of compositional semantics in this style, see Charlow
(2014).

4.4 Fused effects
Despite their prominent practical and theoretical roles in functional program-

ming, monadic techniques for handling multiple effects face a well-known obsta-
cle: the composition of two monads is not necessarily monadic. That is, there is
no general way to define a law-abiding function 𝜇ΘΚ :: Θ (Κ (Θ (Κα))) � Θ (Κα),
even when Θα is a monad with an associated 𝜇Θ :: Θ (Θα) � Θα and Κα is a
monad with 𝜇Κ :: Κ (Κα) � Κα. The reason, intuitively, is that Θ and Κ are
interleaved in 𝜇ΘΚ, which means there’s no way to use the respective 𝜇Θ and 𝜇Κ
to help flatten out the layers of effects.

To see a situation where this fact might rear its head, consider the description
in (4.49). For the purposes of the demonstration, imagine that ‘another’ is
a determiner with both anaphoric and indeterminate effects. It requires an
antecedent — other than what? — and generates a set of possible referents.
Which referents it computes depends on the antecedent: roughly those left in
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Types:
...

Combinators:
...

Type-shifters:

(·)↑ :: (Θα) � Cα Up

𝑚↑ B λ𝑘. 𝑘 ★ 𝑚

(·)↓ :: (Cα) � Θα Down

𝑚↓ B 𝑚𝜂

Meta-combinators:

L :: (σ� τ� ω) � Cσ� τ� Cω Map Left
L (∗) 𝐸1 𝐸2 B (λ𝑎. 𝑎 ∗ 𝐸2) • 𝐸1

R :: (σ� τ� ω) � σ� Cτ� Cω Map Right
R (∗) 𝐸1 𝐸2 B (λ𝑏. 𝐸1 ∗ 𝑏) • 𝐸2

A :: (σ� τ� ω) � Cσ� Cτ� Cω Structured App
A (∗) 𝐸1 𝐸2 B (λ𝑎λ𝑏. 𝑎 ∗ 𝑏) • 𝐸1 ~ 𝐸2

...

Figure 9 A monadic grammar whose binary rules use continuations
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its restrictor once the antecedent is removed. Its type, therefore, is plausibly
rendered as (e� t) � G (Se), with the lexical semantics in (4.48).

another𝑖 :: (e� t) � G (Se)
Janother𝑖K B λ𝑃λ𝑔. {𝑥 | 𝑃𝑥, 𝑥 ≠ 𝑔𝑖}

(4.48)

Putting this determiner together with a restrictor that itself contains both
anaphoric and indeterminate effects looks as in (4.49).

G (S (G (Se)))

(e� t) � G (Se)
another3

G (S (e� t))

e� e� t
picture

G (Se)

e� e
of

G (Se)

(e� t) � Se
a

G (e� t)

e� t
book

G (e� t)

e� e� t
in

Ge

her0 library

R (R>)

R (R>)

R (R>)

R>

Ru

R>

(4.49)

There is no other way to combine these pieces, given the grammar in
Figure 8. This is a shame, since there’s no semantic reason why the assignment-
dependencies induced by ‘another’ and ‘her library’ cannot be collapsed into a
single G-layer. Likewise the alternatives generated by ‘a’ and those by ‘another’
could certainly in principle be represented in a single set determined by the
cross product of the two restrictors. Indeed, the meaning given in (4.50) is a
perfectly plausible denotation for the phrase, in line with the sorts of denotations
otherwise assigned to nested indefinite expressions here. The trouble is just that
there’s no way to compose the determiner and restrictor using the J rules based
on G and S that would bring it about.
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(4.49) :: G (Se)
J(4.49)K B λ𝑔. {𝑥 | (book u in (lib𝑔0)) 𝑦, pic 𝑦 𝑥, 𝑥 ≠ 𝑔3}

(4.50)

And here’s the kicker: the type G (Sα) = r� {α} is a monad! Here’s its 𝜇:

𝜇GS :: G (S (G (Sα))) � G (Sα)
𝜇GS𝑀 B λ𝑔.

⋃{𝑚𝑔 | 𝑚 ∈ 𝑀𝑔}
(4.51)

The trouble again is that this is an entangled mixture of the 𝜇s of G and S, rather
than a composition of those functions. In other words, this 𝜇 treats GS as a single
sort of environment-sensitive computation with parallel outputs, rather than a
combination of independent environment-sensitivity and indeterminacy. We
might, therefore, give it its own type constructor, say HαF r� {α}, since this
is essentially the type Hamblin (1973) works with in his seminal semantics on
questions. The type of ‘another’ would then be (e� t) � Hewith its denotation
unchanged. And with this conjoint effect bottled up in the effect signature, we
could continue to use the type-driven apparatus we have developed so far to
dispatch the right modes of combination wherever it is possible to do so.

Still, it’s hard to deny that this is a blow to the modularity we have championed
in this Element. For starters, in order to compose the phrase in (4.49), the
semantics of ‘a’ and ‘her’ must be lifted to live in the H type space.

a :: (e� t) � He
JaK B λ𝑃λ𝑔. {𝑥 | 𝑃𝑥}

(4.52)

her𝑛 :: He
Jher𝑛K B λ𝑔. {𝑔𝑛}

(4.53)

This is exactly the sort of generalization to the worst case that we have so far
avoided. Yet it is possible that some combinations of intuitively separable effects
nevertheless act together in a self-contained computational system deserving of
its own encapsulated type. In the next section we give an example of such a
system, building on the GS monad above. Then in Chapter 5, we show how to
accomplish many of the same empirical goals while dissolving the system back
into its independent components.

4.4.1 Monad Transformers

Take another look at (4.51). Notice that we can rewrite this definition using
the underlying monadic combinators of S:
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𝜇GS𝑀 B λ𝑔. (λ𝑚. 𝑚𝑔) ★S 𝑀𝑔(4.54)

This is no accident. For any monad Θ, replacing (★S) with (★Θ) in (4.54) would
deliver a well-typed 𝜇GΘ for the composite effect signature GΘ. Given this, we
might define a higher-order constructor G+ as in (4.55), parameterized by an
inner constructor Θ as well as a concrete type α.

G+ ΘαF r� Θα(4.55)

Where an ordinary constructor maps types to types, a higher-order constructor
like the one in (4.55) maps constructors to constructors. They take kinds of
computations as arguments and produce enhanced computations as results.
From this perspective, G+ adds the ability to read and respond to an environment
to an existing computation Θ.

And it’s not hard to prove that whenever the inner computation Θ is monadic,
this enhanced environment-sensitive computation G+ Θ will also satisfy the
monad laws. Higher-order constructors like this, that produce new monads
from old ones, are sometimes known as monad transformers (Liang, Hudak,
& Jones, 1995).

Notice also that the basic G monad is exactly the G+ transformer applied to
the identity monad, defined in (4.56).

IαF α

𝑘 •I 𝑚 B 𝑘 𝑚

𝜇I𝑀 B 𝑀

(4.56)

The I constructor represents a computation that doesn’t do anything but hold a
value. Mapping a function over an I computation is just function application,
since an I computation is nothing but an argument. Using the definitions in
(4.56), we see that (★I) is also just function application. So the equation in
(4.54) with (★I) in place of (★S) just reduces to W, i.e., 𝜇G.

It turns out, almost all of the effects in Table 2 can be seen as applications of
some transformer to the identity monad. That is, they are all special cases of the
act of enhancing an existing computation with a new, particular effect; namely,
the special case when that enhancement is preformed on the trivial computation
I that merely holds a value.

We will not dwell on the applications of this technique (see Shan 2001a),
except to draw attention to one interesting case, that of T. The transformer that
gives rise to T when applied to the identity monad is given in (4.57). This
constructor enhances a computation Θ by adding the ability to read and write to
a common state s that is carried throughout the computation.
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T+ ΘαF s� Θ (α × s)
𝑘 •T+Θ 𝑚 B λ𝑖. 𝑘 •Θ 𝑚𝑖

𝜇T+Θ𝑀 B λ𝑖. (λ〈𝑚, 𝑗〉. 𝑚 𝑗) ★Θ 𝑀 𝑖

(4.57)

When we apply this transformer to S, we get T+ S ≡ D, the type representing
computations in the style of dynamic semantics. In typical presentations of
dynamic semantics, pronouns, discourse, referents, and indefinites interact in
a single pervasive framework encompassing the interleaved effects of reading,
writing, and nondeterminism. For instance, we might find lexical entries like
those in (4.58).

it𝑛 :: De
Jit𝑛K B λ𝑖. {〈𝑖𝑛, 𝑖〉}

(4.58a)

⊲ :: e� De
J⊲K B λ𝑥λ𝑖. {〈𝑥, 𝑥++ 𝑖〉}

(4.58b)

a planet :: De
Ja planetK B λ𝑖. {〈𝑥, 𝑖〉 | planet𝑥}

(4.58c)

if :: Dt� Dt� Dt
JifK B λ𝑚λ𝑛λ𝑖. {〈∀〈𝑝, 𝑗〉 ∈ 𝑚𝑖. 𝑝 ⇒ ∃〈𝑞, 𝑘〉 ∈ 𝑛 𝑗 . 𝑞, 𝑖〉}

(4.58d)

And with these, we might put together derivations of such classic dynamic
phenomena as cross-sentential and donkey binding, as in (4.59) and (4.60).

Dt

Dt

De

De

someone
e� De

⊲

e� t
knocked

D (t� t)

t� t� t
but

Dt

De

she0

e� t
left

A<

L<

J (L<)

R>

L<

(4.59)
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Dt

Dt� Dt

Dt� Dt� Dt
if

Dt

De

De

someone
e� De

⊲

e� t
knocked

Dt

De

she0

e� t
left

>

>

L<

J (L<)

L<

(4.60)

As elegant and well-studied as this system is, one can hardly shake the feeling
that it is overcooked. Nothing brings this out more than the canonical lexical
entries in (4.58a)–(4.58c). The pronoun doesn’t do anything interesting except
read from the input 𝑖; it is deterministic and doesn’t change the state 𝑖 at all.
The referent-pushing operator ⊲ adds its prejacent to the state, but is otherwise
boring; it is deterministic and doesn’t read from its input. And the indefinite
ramifies the state, adding a new thread for each witness, but does not on its own
interact with the state in any way. Yet the three are typed uniformly as De.

In the Chapter 5, we add one last mode of combination based on Category
Theoretic notions, and show that this conflation can be avoided.

4.5 Implementing monadic effects in the type-driven interpreter
Extending the interpreter with a monadic mode of combination requires the

same, now familiar modifications as in the last two chapters. We first add a
mode JN representing the meta-mode J.

data Mode
= FA | BA | PM -- etc
| MR Mode | ML Mode -- map right and map left
| AP Mode -- structured app
| UR Mode | UL Mode -- unit right and unit left
| JN Mode -- join
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To determine the applicability of the JN rule, we’ll need to declare which
effects are monadic. Again, as it happens, all of the applicative effects presented
in this chapter are also monadic, so this predicate is extensionally equivalent to
applicative . Still, we include it for conceptual hygiene so that the code reads

in a manner responsive to the truth.

functor, applicative, monad :: EffX -> Bool
functor _ = True
applicative (WX s) = monoid s
applicative f = functor f && True
monad f = applicative f && True

monoid :: Ty -> Bool
monoid T = True
monoid _ = False

However, the logic determining when to dispatch JN must be slightly
different than that of the others. To see this, compare the types of the R and J
modes, repeated below.

R (∗ :: σ� τ� υ) :: σ� Θτ� Θυ(4.61)
J (∗ :: σ� τ� Θ (Θυ)) :: σ� τ� Θυ(4.62)

Provided with a function (∗) :: σ � τ � υ, the R rule returns a mode of
combination of type σ� Θτ� Θυ. This means that R (∗) is only ever applicable
when the right daughter is of type Θτ. Hence the logic of addMR :

addMR l r = case r of
Comp f t | functor f

-> [ (MR op, Comp f u) | (op, u) <- combine l t ]
_ -> [ ]

This rule only fires when the right daughter’s type has a particular shape:
Comp f t . Otherwise it immediately return an empty list. And when that

daughter does in fact denote a computation, combine is called recursively on
the underlying type t . Because a type is finite, this strategy is guaranteed to
terminate. At every step it strips off some effect wrapper and tries again with
what is left.

But the J meta-combinator is different. Provided with a function (∗) ::
σ � τ � Θ (Θυ), it returns a mode of combination of type σ � τ � Θυ. This
means, in principle, that it could apply to any two types σ and τ, if there happens



Effect-driven interpretation 85

to be a way to combine them to yield something of type Θ (Θυ). There is thus
no way to know simply by looking at the shapes of the daughters’ types l and
r whether the J mode might apply.

Instead, we need to try and combine the daughters first, and then inspect the
results to see if we ended up with anything joinable. Thus we split combine

into two parts. The binaryCombs list holds all of the results computed in the
preceding chapters; that is, all the up-front binary combinations we can find.
Then the unaryCombs function sets to work on each result. At this point there
are only two things to do. First, keep it! A good combination is still a good
combination. Additionally, if its type happens to be Comp f (Comp g a) , where
f and g are the same monadic effect, then go ahead and join it. Again, these

are not exclusive. We hold on to both the layered and the lowered combinations,
since they are both valid.

combine :: Ty -> Ty -> [(Mode, Ty)]
combine l r = binaryCombs >>= unaryCombs

where
binaryCombs =
modes l r
++ addMR l r
++ addML l r
++ addAP l r
++ addUR l r
++ addUL l r

unaryCombs e =
-- keep any result from above
return e
-- and if it happens to have a two-layered
-- monadic type, also join it
++ addJN e

addJN e = case e of
(op, Comp f (Comp g a)) | f == g, monad f

-> [ (JN op, Comp f a) ]
_ -> [ ]

Note that binaryCombs is a list of modes. And unaryCombs is a function
from modes to an extended list of modes. Fittingly, the way to take each element
of the former, pass it in to the latter, and then flatten out all the results, is just
the >>= operation on lists. In programs, as in language, this pattern just has a
way of showing up.
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5 Eliminating effects

5.1 Adjunctions
Let us return to the issue of anaphora. Intuitively, we would like to analyze a

pronoun as a computation that retrieves a salient discourse referent from memory.
In its simplest form, something like (5.1a). And we would like to analyze its
antecedent as a computation that stores a discourse referent in memory. Again
with maximal simplification, something like the operator in (5.1b) might suffice.

it :: Ge
JitK B λ𝑥. 𝑥

(5.1a)

⊲ :: e� We
J⊲K B λ𝑥. 〈𝑥, 𝑥〉

(5.1b)

In this construal, the pronoun and its antecedent constitute semantically and
type-theoretically distinct effects. This alone is no barrier to composition, given
any of the type-driven grammars in the preceding chapters. But in all of those
grammars, the result of putting together a sentence with both an antecedent and
a pronoun will be a computation with two effects. The antecedent will survive
in memory, and the pronoun will continue to await its resolution, as in (5.2).

W (Gt)

We

We

e� We
⊲

e

Jupiter’s

e� e
moon

G (e� t)

e� e� t
obscured

Ge

Ge

its
e� e
spot

L (R<)

L< R>

L<

(5.2)

In other words, we have reading, and we have writing, but we don’t have
binding. In Chapters 3 and 4, we sketched solutions to this that are typical of
dynamic approaches to semantics. These analyses create a new, generalized
effect that models any sort of interaction with a discourse state. In general, a
sentence with unresolved pronouns and fresh new antecedents will denote a
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state transition that both reads from and modifies the state. But on their own,
pronouns will comprise the special case of programs that read from but do
not modify the state, and antecedents the special case of programs that modify
but do not inspect the state. In this sense, as suggested in Chapter 4.4.1, the
dynamic solution is a generalization to the worst case.

Here, we offer a different solution, inspired by Shan (2001b). The essential
intuition is that a discourse in which all pronouns are bound should denote an
ordinary proposition, a pure value. Once the antecedent has supplied its referent
to the pronoun, both the writing and the reading effects should be considered
resolved. The two effects are closure operators to one another.

This duality is mathematically manifest in the isomorphism defined by the
following converse functions.

𝜙 :: (α� Gβ) � Wα� β 𝜓 :: (Wα� β) � α� Gβ(5.3)
𝜙 B λ𝑘λ〈𝑎, 𝑔〉. 𝑘 𝑎 𝑔 𝜓 B λ𝑐λ𝑎λ𝑔. 𝑐 〈𝑎, 𝑔〉

Any Kleisli arrow into a G-computation can be converted to a co-Kleisli arrow
from a W-computation by the function 𝜙. And any co-Kleisli arrow from W can be
converted to a Kleisli arrow into G. And these transformations proceed without
loss of information. They are invertible. That is, 𝜓 (𝜙 𝑘) = 𝑘 for any 𝑘 :: α�Gβ,
and 𝜙 (𝜓 𝑐) = 𝑐 for any 𝑐 :: Wα � β. Setting aside the type constructors, this
isomorphism is just the familiar equivalence between curried and uncurried
presentations of multi-argument functions.

Whenever two functors Ω and Γ have this dual property, they are said to be
adjoint. Specifically, Ω is left adjoint to Γ, written Ω a Γ, when functions into Ω
are isomorphic to functions from Γ. In the case at hand, we say: W a G.

Every adjunction Ω a Γ gives rise to a pair of functions, 𝜀 and 𝜂, by applying
the components of this isomorphism to identity functions. These functions are
known respectively as the co-unit and unit of the adjunction. For the W a G
adjunction specified in (5.3), this yields the functions (5.4).

𝜀 :: W (Gα) � α 𝜂 :: α� G (Wα)(5.4)
𝜀 B 𝜙 id 𝜂 B 𝜓 id
= λ〈 𝑓 , 𝑔〉. 𝑓 𝑔 = λ𝑎λ𝑔. 〈𝑎, 𝑔〉

It turns out that whenever Ω a Γ is an adjunction, the composite functor Γ (Ωα) is
a monad, and the 𝜂 function determined by (5.4) is in fact its 𝜂. This guarantees
that there is always a way of lifting any ordinary value 𝑥 :: α into a trivial
computation 𝑚 :: Ω (Γα) that has the structure required of Ω and Γ.

The 𝜀 function, on the other hand, is entirely new. It guarantees that any
composite computation of type Γ (Ωα) can be deconstructed, eliminating all
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of the Γ and Ω structure. How does this work in the case of W a G? Well, a
computation of type W (Gα) F r × (r� α) is a pair consisting of two things:
an environment 𝑔 :: r and a function from environments to values 𝑓 :: r� α.
To extract that ordinary value of type α, we need only to pass the stored context
𝑔 into the context-dependent function 𝑓 .

5.1.1 Adjunction as a higher-order mode of combination

Note that adjunction is a binary, asymmetric relation between functors. In this
respect, constructing a mode of combination that takes advantage of adjunctions
between effects is particularly straightforward. After all, a mode of combination
is itself a binary, asymmetric relation between denotations. We could, for
instance, imagine the forward and backward co-unit combinators in (5.5).

(⊳>) :: Ω (α� β) � Γα� β(5.5a)
𝐿 ⊳> 𝑅 B 𝜀 ((λ 𝑓 . (λ𝑥. 𝑓 𝑥) • 𝑅) • 𝐿)
(⊳<) :: Ωα� Γ (α� β) � β(5.5b)

𝐿 ⊳< 𝑅 B 𝜀 ((λ𝑥. (λ 𝑓 . 𝑓 𝑥) • 𝑅) • 𝐿)

These might be used in a derivation like (5.6), which is identical to the
earlier (5.2) except for the last step, where this time binding is achieved. Notice
that this is a kind of dynamic or discourse binding; the referent persists up the
computation of the left branch, until the subject meets the predicate, at which
point it sinks down the right branch to value the pronoun.

t

We

We

e� We
⊲

e

Jupiter’s

e� e
moon

G (e� t)

e� e� t
obscured

Ge

Ge

its
e� e
spot

⊳<

L< R>

L<

(5.6)

But as usual, this first-order combinatorial approach would need special cases
for every basic mode of combination (in addition to > and <), and then would
inevitably fall flat in the presence of other, irrelevant effects. So we generalize
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in the typical way: whenever there is any way of combining the underlying
types of a Ω constituent and a Γ constituent, where Ω a Γ, we can combine the
constituents by mapping over the two effects, combining the underlying values,
and then applying 𝜀 to the result. The complete type-driven grammar, extending
that of the last chapter, is given in Figure 10.

E (∗) 𝐸1 𝐸2 B 𝜀 ((λ𝑙. (λ𝑟. 𝑙 ∗ 𝑟) • 𝐸2) • 𝐸1)(5.7)

The simple combinators (⊳>) and (⊳<) are thus reproduced as E> and E<. And
the derivation in (5.6) is equivalent to the one in (5.8).

t

We

We

e� We
⊲

e

Jupiter’s

e� e
moon

G (e� t)

e� e� t
obscured

Ge

Ge

its
e� e
spot

E<

L< R>

L<

(5.8)

What’s more, incidental effects above and below the adjoint ones no longer
interfere with the adjunction, as they shouldn’t. For instance, adding some
indeterminacy in one of the constituents of (5.8), as in (5.9), does not preclude
binding.

St

We

We

e� We
⊲

e

Jupiter’s

e� e
moon

G (S (e� t))

e� e� t
obscured

G (Se)

e� Se
some of

Ge

Ge

its
e� e
spot

E (R<)

L< R (R>)

R>

L<

(5.9)
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The first-order combinators (⊳>) and (⊳<) would not have known what to do
in this circumstance, as the underlying types — e and S (e� t) — cannot be
combined by any basic mode of combination. But with E, these underlying types
are combined in the obvious way — with R< — and then the W and G effects
cancel each other out. The referent coming from the left is passed into the
function requesting a referent on the right, and only the indeterminacy remains.

The example in (5.9) demonstrates how binding into an indefinite emerges.
The inverse is also possible.

St

S (We)

S (We)

e� We
⊲

Se

Some planet’s

e� e
moon

G (e� t)

e� e� t
obscured

Ge

Ge

its
e� e
spot

L (E<)

L (L<)

R>

R>

L<

(5.10)

And for the coup de grâce: indefinites can also bind into other indefinites.
This is shown in (5.11).

St

S (We)

S (We)

e� We
⊲

Se

Some planet’s

e� e
moon

G (S (e� t))

e� e� t
obscured

G (Se)

e� Se
some of

Ge

Ge

its
e� e
spots

J (L (E (R<)))

L (L<)

R>

R (R>)

R>

L<

(5.11)

Let us walk through the final step. The J meta-combinator from the previous
chapter combines the two daughters via the mode of combination determined
by its argument — L (E (R<)) — before flattening the result with 𝜇. That inner
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Types:
τF e | t | . . . Primitive types

| τ� τ Function types
| . . . . . .
| Στ Computation types

Effects:
ΣF G Reading

| S Indeterminacy
| . . . . . .

Basic Combinators:
(>) :: (α� β) � α� β Forward Application

𝑓 > 𝑥 B 𝑓 𝑥

(<) :: α� (α� β) � β Backward Application
𝑥 < 𝑓 B 𝑓 𝑥

. . .

Meta-combinators:
L :: (σ� τ� υ) � Θσ� τ� Θυ Map Left

L (∗) 𝐸1 𝐸2 B (λ𝑎. 𝑎 ∗ 𝐸2) • 𝐸1

R :: (σ� τ� υ) � σ� Θτ� Θυ Map Right
R (∗) 𝐸1 𝐸2 B (λ𝑏. 𝐸1 ∗ 𝑏) • 𝐸2

A :: (σ� τ� υ) � Θσ� Θτ� Θυ Structured App
A (∗) 𝐸1 𝐸2 B (λ𝑎λ𝑏. 𝑎 ∗ 𝑏) • 𝐸1 ~ 𝐸2

Ú :: ((σ� σ′) � τ� υ) � (Θσ� σ′) � τ� υ Unit Right
Ú (∗) 𝐸1 𝐸2 B (λ𝑎. 𝐸1 (𝜂 𝑎)) ∗ 𝐸2

Ù :: (σ� (τ� τ′) � υ) � σ� (Θτ� τ′) � υ Unit Left
Ù (∗) 𝐸1 𝐸2 B 𝐸1 ∗ (λ𝑏. 𝐸2 (𝜂 𝑏))

J :: (σ� τ� Θ (Θυ)) � σ� τ� Θυ Join
J (∗) 𝐸1 𝐸2 B 𝜇 (𝐸1 ∗ 𝐸2)

E :: (σ� τ� υ) � Ωσ� Γτ� υ Co-unit
E (∗) 𝐸1 𝐸2 B 𝜀 ((λ𝑎. (λ𝑏. 𝑎 ∗ 𝑏) • 𝐸2) • 𝐸1)

Figure 10 A type-driven grammar with adjunctions
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complex combinator is a combination of the two top-level combinators in (5.10)
and (5.9). As in (5.10), the outer L means we begin by skipping over the left
daughter’s top effect, S. This leaves us with We on the left and G (S (e� t)) on
the right. These are combined via E (R<), exactly as in (5.9). The result of these
combined combinations, just before the 𝜇 imposed by the J, is of type S (Se).
The outer S corresponds to the left indefinite, which was mapped over first, and
the inner S to the right indefinite, which is mapped over while executing the 𝜀

of E. Finally, this doubly-layered set is unioned by the outermost J, delivering a
single indeterminate proposition with witnesses varying by both planets and
their spots.

Note that this is exactly the sort of discourse binding made available by
full-throttle dynamic semantic frameworks, like that of Chapter 4.4.1. There, the
context-sensitivity, memory, and parallelism that characterize such frameworks
were entangled in a single effect constructor Dα F s� {α × s}. As a result,
any expression that engaged in any one of these computational effects had to be
typed as if it engaged in all of them, and its denotation had to include trivial
structures — singleton sets, or unchanged or unused inputs — for those effects
that were beside its point.

But in (5.11), there is no need to lift or reanalyze the individual effectful
components. Indefinite denotations are indeterminate. Subjects get remembered.
Pronouns need antecedents. These are the fundamental semantic properties of
such expressions, and in (5.11), this is all there is to their denotations.

5.1.2 Crossover

One fortuitous consequence of this formulation of binding is that it inherits
the non-commutativity of adjunction. The E rule expects the left adjoint to
come from the left daughter. For the W a G adjunction, this means that discourse
antecedents must precede the pronouns they bind. Expressions in which this
order is reversed are still composable, and even composable in such a way that
the would-be binder outscopes its would-be bindee, but the two effects will never
cancel out. Nothing in the grammar will ever pass the remembered referent
coming from the right into the request for a referent coming from the left.



Effect-driven interpretation 93

S (W (Gt))

Ge

Ge

her
e� e
mom

S (W (e� t))

e� e� t
called

S (We)

e� We
⊲

Se

someone

R (R (L<))

L< R (R>)

R>

(5.12)

In this manner, the mode of combination derives the scope and binding
pattern long known to linguists as crossover. Namely, discourse antecedence
and retrieval proceeds from left to right, even while general semantic scope may
be arbitrarily inverted. To put a point on this, consider the derivation in (5.13).
The quantificational object takes logical scope over the indefinite subject, so
that teachers vary with students. But since the computation still includes a G
constructor, the pronoun’s request for an antecedent remains open.

G (C (W (St)))

G (Se)

e� Se
one of

Ge

Ge

her
e� e

teachers

C (W (e� t))

e� e� t
called

C (We)

e� We
⊲

Ce

every student

L (R (R (L<)))

R>

L<

R (R>)

R>

(5.13)

To be sure, there are many ways to combine the subject and predicate of
(5.13), which determine different layerings of the various effects. But none of
them will fill the pronoun’s request for an antecedent. The best that one can do
is scope the object’s referent W over the subject’s request G, yielding the layering
C (W (G (St))). But as there is no independent 𝜀-mechanism beside the E rule,
they will just live on like this, anaphoric ships passing in the night.3

3See Barker and Shan (2014) for a crossover solution with a similar character. Barker and
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5.2 Islands
Some effects may be delimited not by any particular closure operator, but

rather by a certain syntactic configuration. Loosely following common parlance
in linguistic literature, we will refer to such encapsulating domains as islands.
For example, the scopes of distributive quantifiers like ‘every’ and ‘no’ are
almost always bounded by their enclosing finite clauses, regardless of what
other expressions they co-occur with.

It is tempting to associate such scope-delimiting nodes with obligatory closure
operators, but a moment’s reflection on the discussion in Chapter 3.3 will show
that this will not in general suffice. There it is already demonstrated how
nondeterminism can spill right over the edge of an existential closure operator,
permitting the sort of exceptional scope associated with indefinites. With
distributive quantifiers, the story is no different. The troublesome derivation
would look as in (5.14).

Ct

λ𝑐.∀𝑥. 𝑐 (if (pass𝑥) rain)

C (t� t)
λ𝑐.∀𝑥. 𝑐 (if (pass𝑥))

t� t� t
if

Ct

λ𝑐.∀𝑥. 𝑐 (pass𝑥)

Ct� t
 

Ct

λ𝑐.∀𝑥. 𝑐 (pass𝑥)

Ce

λ𝑐.∀𝑥. 𝑐 𝑥
everyone

e� t
pass

passed

t

rain

it was raining

A>

R>

R (Ú>)

L<

(5.14)

Shan manage all effect combinations using layers of continuations, as sketched in Chapter 4.4.1.
Rightward referent introductions may outscope leftward pronouns, but the two continuation layers
can never be merged. In contrast, leftward referents and rightward pronouns may simply meet on
the same level, where they cancel each other out.
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Let’s say the closure operator  has the Lowering semantics assigned by
Barker and Shan (2014) in (5.15).

 :: Ct� t
 B λ𝑚. 𝑚 id

(5.15)

If it were to apply directly to the conditional antecedent, it would result in the
ordinary proposition true if everyone passed, false if anyone didn’t.

 Jeveryone passedK = Jeveryone passedK id(5.16)
= (λ𝑐. ∀𝑥. 𝑐 (pass𝑥)) id
= ∀𝑥. pass𝑥

But in (5.14), the operator does not apply directly to the antecedent. Instead
it is mapped over the antecedent by R, and then applied to a 𝜂-ified version
of the underlying proposition. That underlying proposition is everything in
the scope of the continuation, roughly pass𝑥. Applying 𝜂 to this results in
λ𝑘. 𝑘 (pass𝑥). And then applying  to this lifted proposition brings us right
back where we started: pass𝑥. The net result is a no-op, and the antecedent
remains a quantificationally-charged computation. The conditional operator is
mapped over it, and the island is escaped.

How then can narrow scope be enforced? One of the benefits of the effect-
theoretic approach we have taken is that the types of nodes are revealing of
their contents. So far we have used this information only to determine the ways
that two constituents may be combined. But we might just as easily use the
information to curtail, or boost, certain kinds of interpretations. Looking again
at the tree in (5.14), we can tell at a glance that something has gone empirically
awry because the restrictor has unclosed continuations in it. That is, its type
includes the letter C. That’s enough to know that some quantifier has not yet
closed its scope, and if nothing is done, interpretations will be generated in
which it continues to gobble up, and quantify over, more of its syntactic context.

So one way to implement quantificational scope islands is simply to filter out
any derivations with C-effects in their types. In other words, islandhood may be
type-driven. Assuming tensed clauses constitute such an island for quantifiers,
the derivation in (5.14) would never arise because the conditional antecedent
does not have a valid type for a tensed clause. Fortunately, the types do allow
for other derivations, like the obvious (5.17).
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Ct

if (∀𝑥.pass𝑥) rain

t� t
if (∀𝑥.pass𝑥)

t� t� t
if

t

∀𝑥.pass𝑥

Ct� t
λ𝑚.𝑚 id  

Ct

λ𝑐.∀𝑥. 𝑐 (pass𝑥)

Ce

λ𝑐.∀𝑥. 𝑐 𝑥
everyone

e� t
pass

passed

t

rain

it was raining

R>

>

>

L<

(5.17)

In fact, given the syntactic restriction on the acceptable types of clausal
interpretations, the explicit lowering operator  is unnecessary. If desired,
closure, too, may be type-driven, at least for any operator  :: Θυ� ξ where ξ is
ordinary (effect-free). The reason is that such operators reduce the complexity of
their prejacents. They only apply to denotations with particular computational
signatures, and in so doing, they strip off the types that trigger them. This
guarantees that  can only apply to its own output finitely many times. In other
words, no loops. Incorporating this into the type-driven framework of Figure 10,
we might add meta-combinators like (5.18) for any appropriately typed closure
operators  .

D :: (σ� τ� Θυ) � σ� τ� v
D (∗) 𝐸1 𝐸2 B  (𝐸1 ∗ 𝐸2)

(5.18)

Suppose that two constituents 𝐸1 :: σ and 𝐸2 :: τ can be combined via (∗)
to make something of type Θυ. And further suppose that Θυ is a type that can
be closed — a complete thought, so to speak — by an operator  :: Θυ � ξ.
For instance, if Θ = C and υ = t, then the computation is ripe for lowering via
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(5.15), producing an ordinary proposition of type t. In that case, the rule in
(5.18) combines and lowers the two constituents 𝐸1 and 𝐸2 in one fell swoop,
and the de-continuized composition continues.

5.3 Implementing adjoint effects in the type-driven interpreter
All the scaffolding for adding adjoint and closure operators has already

been laid. As ever, we first add variants to the Mode representing the E and D
operations.

data Mode
= FA | BA | PM -- etc
| MR Mode | ML Mode -- map right and map left
| AP Mode -- structured app
| UR Mode | UL Mode -- unit right and unit left
| JN Mode -- join
| EP Mode -- co-unit
| DN Mode -- closure

Then we add a predicate adjoint characterizing the relation between adjoint
effects. The only adjunction we treat here is that between W and G, which are
adjoint so long as they read and write the same kind of data. Thus we check
that the parameters to the W and G effects are the same.

functor, applicative, monad :: EffX -> Bool
functor _ = True
applicative (WX s) = monoid s
applicative f = functor f && True
monad f = applicative f && True

monoid :: Ty -> Bool
monoid T = True
monoid _ = False

adjoint :: EffX -> EffX -> Bool
adjoint (WX i) (GX j) = i == j
adjoint _ _ = False

The combine rule is extended with two cases, one binary and one unary. The
binary rule addEP looks for a pair of daughters Comp f s and Comp g t that
have adjoint effects. When it finds them, it attempts to combine their underlying
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types s and t . For every way (op, u) that these types can be combined, a
top-level combinator Ep op is returned with result type u .

The unary rule addDN looks at the results of a binary combination to see
whether it can be closed. For illustrative purposes, we include only the closure
operator for continuation effects, that of Section 5.2. Actually we slightly
generalize this to allow for lowering a quantifier at any location where it would
be well-typed to do so. That is, we allow for lowering whenever we have reached
a quantificational type (α� α) � ο that might be applied to the identity function,
and thus closed. Checking that this is possible is just a matter of checking that
the underlying type and intermediate parameter of the C effect are the same.

combine :: Ty -> Ty -> [(Mode, Ty)]
combine l r = binaryCombs >>= unaryCombs

where
binaryCombs =

modes l r
++ addMR l r
++ addML l r
++ addAP l r
++ addUR l r
++ addUL l r
-- if the left and right daughters are adjoint, try
-- to cancel them out with their co-unit
++ addEP l r

unaryCombs e =
return e
++ addJN e
-- and if the result type is close-able, close it
++ addDN e

addEP l r = case (l, r) of
(Comp f s, Comp g t) | adjoint f g
-> [ (EP op, u) | (op, u) <- combine s t ]

_ -> [ ]

addDN e = case e of
(op, Comp (CX o a') a) | a == a'
-> [ (DN op, o) ]

_ -> [ ]

To complete the picture on closure, we implement the discussion of island
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enforcement from Section 5.2. Again the goal is just to give a proof of concept,
showing how effect types can be used to do syntactic work. So we assume that
islands correspond to particular syntactic nodes, and that the parser will one
way or another have done the work of identifying such boundaries before the
type-driven interpreter sets to work. We thus extend the Syn type to include a
branching node that has been identified as an island for quantifier scopes.

data Syn
= Leaf Ty String
| Branch Syn Syn
| Island Syn Syn

Next we have to specify which types the island seeks to trap. We do this
with the predicate evaluated . C -type computations are obviously out. These
are denotations with quantifiers that are still up in the air, consuming their
contexts, so they do not count as evaluated . Other effects are passed over, but
we recurse into their underlying types to make sure that they are not hiding any
embedded un-lowered quantifiers. Likewise with function types, we check that
they are not going to spring into life as newly escaped quantifiers as soon as
they are saturated with an argument down the road. That leaves only atomic
types, which all count as evaluated .

evaluated :: Ty -> Bool
evaluated t = case t of

Comp (CX _ _) _ -> False
Comp _ a -> evaluated a
_ :-> a -> evaluated a
_ -> True

We put this predicate to work when extending the interpreter synsem . The
first two cases are the same as before. All that remains is to say how Island

nodes are interpreted. And here, all we do is interpret them as if they were
ordinary branching nodes, and then discard any unevaluated results. That is,
any e among the results of synsem (Branch lsyn rsyn) must have a properly
evaluated type to escape the island. And that’s it!
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synsem :: Syn -> [Sem]
synsem syn = case syn of

(Leaf t w) -> [Lex t w]
(Branch lsyn rsyn) ->

[ Comb ty op lsem rsem
| lsem <- synsem lsyn
, rsem <- synsem rsyn
, (op, ty) <- combine (getType lsem) (getType rsem) ]

(Island lsyn rsyn) ->
[ e | e <- synsem (Branch lsyn rsyn), evaluated (getType e) ]

where
getType (Comb ty _ _ _) = ty
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Appendix A

Implementations of combinatoric operations

A1 Types

Here we give Haskell encodings of the effect types used in this Element. As
indicated in the main text, many of these are reproductions of or equivalent
to data types that Haskell pre-defines. We note such correspondences in the
comments.

data G r a = G (r -> a) -- Haskell's `Reader`
data W w a = W (a, w) -- Haskell's `Writer`
data M a = Just a | Nothing -- Haskell's `Maybe`
data T g a = T (g -> (a, g)) -- Haskell's `State`
data D g a = D (g -> [(a, g)]) -- Haskell's `StateT []`
data C o a = C ((a -> o) -> o) -- Haskell's `Cont`
type S = [ ] -- Haskell's `[]`
data F a = F (a, [a])

A2 Functor instances

For each effect, we define a law-abiding fmap implementing the (•) operation
assumed in Chapter 2.

class Functor f where
fmap :: (a -> b) -> f a -> f b

instance Functor (G r) where
fmap k (G m) =

G (\g -> k (m g))

instance Functor (W w) where
fmap k (W m) =

W (k (fst m), snd m)

instance Functor M where
fmap k m =

case m of
Just a -> Just (k a)
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Nothing -> Nothing

instance Functor (T i) where
fmap k (T m) =
T (\g -> let (a, h) = m g in (k a, h))

instance Functor (D s) where
fmap k (D m) =
D (\g -> let outs = m g in [(k a, h) | (a, h) <- outs])

instance Functor (C o) where
fmap k (C m) =
C (\c -> m (\a -> c (k a)))

instance Functor S where
fmap k m
= [k a | a <- m]

instance Functor F where
fmap k (F m) =
F (k (fst m), [k a | a <- snd m])

A3 Applicative instances

For each effect, we define a law-abiding <*> , implementing the (~) operation
of Chapter 3.

class Functor f => Applicative f where
pure :: a -> f a
(<*>) :: f (a -> b) -> f a -> f b

instance Applicative (G r) where
pure x = G (\g -> x)
(G ff) <*> (G xx) =
G (\g -> ff g (xx g))

instance Monoid w => Applicative (W w) where
pure x = W (x, mempty)
(W ff) <*> (W xx) =
W (fst ff (fst xx), snd ff <> snd xx)
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instance Applicative M where
pure x = Just x
ff <*> xx =

case (ff, xx) of
(Just f, Just x) -> Just (f x)
(_ , _ ) -> Nothing

instance Applicative (T g) where
pure x = T (\g -> (x, g))
(T ff) <*> (T xx) =

T (\g -> let (f, h) = ff g
(x, i) = xx h

in (f x, i))

instance Applicative (D g) where
pure x = D (\g -> [(x, g)])
(D ff) <*> (D xx) =

D (\g -> [(f x, i) | (f, h) <- ff g, (x, i) <- xx h])

instance Applicative (C o) where
pure x = C (\c -> c x)
(C ff) <*> (C xx) =
C (\c -> ff (\f -> xx (\x -> c (f x))))

instance Applicative S where
pure x = [x]
ff <*> xx
= [f x | f <- ff, x <- xx]

instance Applicative F where
pure x = F (x, [x])
(F ff) <*> (F xx) =
F (fst ff (fst xx), [f x | f <- snd ff, x <- snd xx])

A4 Monad instances

For each effect, we define a law-abiding >>= , implementing the (>>=) operation
of Chapter 4.

class Applicative f => Monad f where
(>>=) :: f a -> (a -> f b) -> f b
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return :: a -> f a
return = pure

join :: f (f a) -> f a
join m = m >>= id

instance Monad (G g) where
(G m) >>= k =
G (\g -> let G n = k (m g) in n g)

instance Monoid w => Monad (W w) where
(W m) >>= k =

W (let W n = k (fst m) in (fst n, snd m <> snd n))

instance Monad M where
m >>= k =
case m of

Just a -> k a
Nothing -> Nothing

instance Monad (T g) where
(T m) >>= k =
T (\g -> let (a, h) = m g

T n = k a
in n h)

instance Monad (D g) where
(D m) >>= k =
D (\g -> [(b, i) | (a, h) <- m g

, let D n = k a
, (b, i) <- n h])

instance Monad (C o) where
(C m) >>= k =
C (\c -> m (\x -> let C n = k x in n c))

instance Monad S where
m >>= k
= [b | x <- m, b <- k x]

instance Monad F where
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(F m) >>= k =
F ( let F n = k (fst m) in fst n

, [b | a <- snd m, let F n = k a, b <- snd n])

A5 Adjunction instances

Here we implement the adjunction between W and G , relied upon in Chapter 5.

class Adjoint f g where
unit :: a -> f (g a)
counit :: g (f a) -> a

instance Adjoint (G g) (W g) where
unit a = G (\g -> W (a, g))
counit (W (G m, g)) = m g
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Appendix B

The complete type-driven interpreter

Here we collect the snippets defined in the text implementing type-driven
interpretation. The grammar is that of Figure 10, plus the D rule of (5.18).

-- representations of types
data Ty

= TyE | TyT -- primitive types
| Ty :-> Ty -- function types
-- other compound types, as desired
| Comp EffX Ty -- computation types
deriving (Eq, Show)

-- representations of effect constructors
data EffX

= SX -- computations with indeterminate results
| GX Ty -- computations that query an environment of type Ty
| WX Ty -- computations that store information of type Ty
| CX Ty Ty -- computations that quantify over Ty contexts
-- and so on for other effects, as desired
deriving (Eq, Show)

-- predicates characterizing the algebraic properties of the EffX
functor, applicative, monad :: EffX -> Bool
functor _ = True
applicative (WX s) = monoid s
applicative f = functor f && True
monad f = applicative f && True

monoid :: Ty -> Bool
monoid TyT = True
monoid _ = False

adjoint :: EffX -> EffX -> Bool
adjoint (WX i) (GX j) = i == j
adjoint _ _ = False

-- an inventory of combinatory modes
data Mode



Effect-driven interpretation 107

= FA | BA | PM -- basic modes
| MR Mode | ML Mode -- map right and map left
| AP Mode -- structured app
| UR Mode | UL Mode -- unit right and unit left
| JN Mode -- join
| EP Mode -- co-unit
| DN Mode -- closure

-- syntactic objects to be interpreted
data Syn
= Leaf Ty String
| Branch Syn Syn
| Island Syn Syn

-- semantic objects describing an interpretation
data Sem
= Lex Ty String
| Comb Ty Mode Sem Sem

-- the recursive interpreter
synsem :: Syn -> [Sem]
synsem syn = case syn of
(Leaf t w) -> [Lex t w]
(Branch lsyn rsyn) ->

[ Comb ty op lsem rsem
| lsem <- synsem lsyn
, rsem <- synsem rsyn
, (op, ty) <- combine (getType lsem) (getType rsem) ]

(Island lsyn rsyn) ->
[ e | e <- synsem (Branch lsyn rsyn), evaluated (getType e) ]

where
getType (Comb ty _ _ _) = ty
evaluated t = case t of

Comp (CX _ _) _ -> False
Comp _ a -> evaluated a
_ :-> a -> evaluated a
_ -> True

-- basic modes of combination
modes :: Ty -> Ty -> [(Mode, Ty)]
modes l r = case (l, r) of

(a :-> b , _ ) | r == a -> [(FA, b)]
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(_ , a :-> b) | l == a -> [(BA, b)]
(TyE :-> TyT, TyE :-> TyT) -> [(PM, TyE :-> TyT)]
_ -> []

-- the logic of applying higher-order modes to types
combine :: Ty -> Ty -> [(Mode, Ty)]
combine l r = binaryCombs >>= unaryCombs

where
binaryCombs =

modes l r
++ addMR l r
++ addML l r
++ addAP l r
++ addUR l r
++ addUL l r
++ addEP l r

unaryCombs e =
return e
++ addJN e
++ addDN e

addMR, addML, addAP, addUR, addUL, addEP :: Ty -> Ty -> [(Mode, Ty)]
-- if the right daughter is functorial, try to map over it
addMR l r = case r of

Comp f t | functor f
-> [ (MR op, Comp f u) | (op, u) <- combine l t ]

_ -> [ ]

-- if the left daughter is functorial, try to map over it
addML l r = case l of

Comp f s | functor f
-> [ (ML op, Comp f u) | (op, u) <- combine s r ]

_ -> [ ]

-- if both daughters are applicative, try structured application
addAP l r = case (l, r) of

(Comp f s, Comp g t) | f == g, applicative f
-> [ (AP op, Comp f u) | (op, u) <- combine s t ]

_ -> [ ]

-- if the left daughter closes an applicative effect,
-- try to purify the right daughter
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addUR l r = case l of
Comp f s :-> s' | applicative f

-> [ (UR op, u) | (op, u) <- combine (s :-> s') r ]
_ -> [ ]

-- if the right daughter closes an applicative effect,
-- try to purify the left daughter
addUL l r = case r of
Comp f t :-> t' | applicative f

-> [ (UL op, u) | (op, u) <- combine l (t :-> t') ]
_ -> [ ]

-- if the left and right daughters are adjoint, try co-unit
addEP l r = case (l, r) of
(Comp f s, Comp g t) | adjoint f g

-> [ (EP op, u) | (op, u) <- combine s t ]
_ -> [ ]

addJN, addDN :: (Mode, Ty) -> [(Mode, Ty)]
-- if a result of combination has a two-layered, join it
addJN e = case e of
(op, Comp f (Comp g a)) | f == g, monad f

-> [ (JN op, Comp f a) ]
_ -> [ ]

-- if a result of combination can be closed, close it
addDN e = case e of
(op, Comp (CX o r) a) | r == a

-> [ (DN op, o) ]
_ -> [ ]
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